Continuous Electrodeposition Modelling : Tertiary Current Distribution on a Plane Electrode-Effect of Axial Diffusion at Low Peclet Number

  • Jacques Josserand
  • Patrick Ozil
  • Antoine Alemany
  • Serguei A. Martemianov
  • Bernadette Nguyen
  • Pascale Pham


The purpose of the work is to develop a general model of the phenomena occurring in continuous electrodepositon processes. This study involves the adaptation of the commercial software FLUX-EXPERT® — based on a finite element method — for determining the current distribution in an electrolyzer, from the primary distribution to the tertiary. This latter case requires a simultaneous solving of electrical and mass balance equations for deriving the electrical potential Ф and the concentration C of the electroactive species, which are strongly coupled at the electrolyte-cathode interface.


Current Distribution Axial Diffusion Plane Electrode Electroactive Species Wall Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Asada, F. Hinc, S. Yoshikawa and S. Okada, Mass transfer and current distribution under free convection conditions, J. Electrochem. Soc. 107:242 (1960).CrossRefGoogle Scholar
  2. 2.
    J. Newman, Resistance for flow of current to a disk, J. Electrochem. Soc. 113:501 (1966).CrossRefGoogle Scholar
  3. 3.
    J. Newman, Current distribution on a rotating disk below the limiting current, J. Electrochem. Soc. 113:1235 (1966).CrossRefGoogle Scholar
  4. 4.
    R. V. Homsy and J. Newman, Current distribution on a plane below a rotating disk, J. Electrochem. Soc. 121:1448(1974).CrossRefGoogle Scholar
  5. 5.
    P. Pierini, P. Appel and J. Newman, Current distribution on a disk electrode for redox reactions, J. Electrochem. Soc. 123:366 (1976).CrossRefGoogle Scholar
  6. 6.
    W.R. Parrish and J. Newman, Current distribution on a plane electrode below the limiting current, J. Electrochem. Soc. 116:169 (1969).CrossRefGoogle Scholar
  7. 7.
    W.R. Parrish and J. Newman, Current distributions on plane, parallel electrodes in channel flow, J. Electrochem. Soc. 117:43 (1969).CrossRefGoogle Scholar
  8. 8.
    A. Katagiri, Calculation of steady-state distributions of concentrations and potential controlled by diffusion and migration of ions, J. Appl. Electrochem. 21:487 (1991).CrossRefGoogle Scholar
  9. 9.
    R. Alkire and A.A. Mirarefi, The current distribution within tubular electrodes under laminar flow, J. Electrochem. Soc. 120:1507 (1973).CrossRefGoogle Scholar
  10. 10.
    K. Viswanathan and D.T. Chin, Current distribution on a continuous moving sheet electrode, J. Electrochem. Soc. 124:709 (1977).CrossRefGoogle Scholar
  11. 11.
    R. Sautebin and R. Landolt, Anodic leveling under secondary and tertiary current distribution conditions, J. Electrochem. Soc. 129:946 (1982).CrossRefGoogle Scholar
  12. 12.
    S.C. Ling, Heat transfer from a small isothermal spanwise strip on an insulated boundary, J. of Heat Transfer, Trans. ASME. 230 (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jacques Josserand
    • 1
  • Patrick Ozil
    • 2
  • Antoine Alemany
    • 1
  • Serguei A. Martemianov
    • 3
  • Bernadette Nguyen
    • 2
  • Pascale Pham
    • 4
  1. 1.LEGIInsitut de Mécanique de GrenobleGrenobleFrance
  2. 2.Centre de Recherche en Electrochimie Minérale et en Génie des Procédés (URA CNRS 1212)ENSEEG(INPG)Saint Martin d’Hères CedexFrance
  3. 3.A.N. Frumkin Inst, of ElectrochemistryAcadémie des Sciences de RussieMoscouRussia
  4. 4.DT2IMeylan ZirstFrance

Personalised recommendations