Skip to main content

Part of the book series: Microwave Technology Series ((MRFT,volume 10))

  • 375 Accesses

Abstract

The development of microwave electronics has always been driven by the demands of short wavelength radio (and later radar) systems. The history of microwaves started already with the first experiments of Heinrich Hertz around 1887. Hertz used a spark transmitter that produced signals in a very large frequency band and he selected from these a band around 420 MHz with an antenna that measured half a wavelength at this frequency. The receiving antenna had the same dimensions. Hertz also used parabolic mirrors and lenses of dielectric material. In 1893 Lord Kelvin gave a theoretical analysis of hollow waveguides and shortly afterwards Oliver Lodge demonstrated waveguides at frequencies of 1.5–4 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkhausen, H. and Kurtz, K. (1920) Die Kürzesten, mit Vakuumröhren herstellbaren Wellen. 21, 1–6.

    Google Scholar 

  2. Benham, W. E. (1928, 1931) Theory of internal action of thermionic systems at moderately high frequencies. Philos. Mag., 5, 641–662; 11, 457-517.

    Google Scholar 

  3. Müller, I. (1933, 1934) Elektronenschwingungen in Hochvakuum. Hochfrequenztech. Elektroakust. 14, 156–67; 43, 195.

    Google Scholar 

  4. Ginzton, E. L. (1975) The $100 idea. IEEE Spectrum, 12, 30–9.

    Google Scholar 

  5. Burns, R. W. (1988) The background to the development of the cavity magnetron, in Radar Development to 1945, Peregrinus.

    Google Scholar 

  6. Boot, H. A. H. and Randall, J. T. (1976) Historical notes on the cavity magnetron. IEEE Trans. Electron Devices, 23, 724–9.

    Article  Google Scholar 

  7. Nakajima, S. (1992) Japanese radar in WW II. Radioscientist (URSI Mag.), 3, 33–7.

    MathSciNet  Google Scholar 

  8. Kompfner, R. (1976) The invention of traveling wave tubes. IEEE Trans. Electron Devices, 23, 730–8.

    Article  Google Scholar 

  9. Flyagin, V. A. and Gaponov, A. V. (1977) The gyrotron. IEEE Trans. Microwave Theory Tech., 25, 514–21.

    Article  Google Scholar 

  10. Douglas, A. (1981) The crystal detector. IEEE Spectrum, 18, 64–67.

    Google Scholar 

  11. Hines, M. E. (1984) The virtues of non-linearity: detection, frequency conversion, parametric amplification and harmonic generation. IEEE Trans. Microave Theory Tech. 32, 1097–104.

    Article  Google Scholar 

  12. de Loach B. C. (1976) The Impatt story. IEEE Trans. Electron Devices, 23, 657–60.

    Article  Google Scholar 

  13. Esaki, L. (1976) Discovery of the tunnel diode. IEEE Trans. Electron Devices, 23, 644–7.

    Article  Google Scholar 

  14. Chang, L. L., Esaki, L. and Tsu, R. (1974) Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett., 24, 593.

    Article  Google Scholar 

  15. Ridley, B. K. and Watkins, T. B. (1961) The possibility of negative resistance effects in semiconductors. Proc. Phys. Soc, 78, 293–304.

    Article  Google Scholar 

  16. Hilsum, C. (1978) Historical background of hot-electron physics (a look over the shoulder). Solid State Electron., 21, 5–8.

    Article  Google Scholar 

  17. Gunn, J. B. (1976) The discovery of microwave oscillations in gallium arsenide. IEEE Trans. Electron Devices, 23, 705–13.

    Article  Google Scholar 

  18. Baechtold, W., Daetwyler, K., Forster, T., Mohr, T. O., Walter, W., Wolf P. (1973) Si and GaAs 0.5 μm-gate Schottky-barrier field-efeect transistors. Electron. Lett., 9, 232–4.

    Article  Google Scholar 

  19. Van Tuyl, R. L. and Liechti, C. A. (1974) High-speed integrated logic with GaAs Mesfet's. IEEE J. Solid-State Circuits, 9, 269–76.

    Article  Google Scholar 

  20. Dingle, R., Störnier, H. L., Gossard, A. C. and Wiegmann, W. (1980) Electronic properties of the GaAs-AlGaAs interface with applications to multi-interface heterojunction superlattices. Surf. Sci., 98, 90.

    Article  Google Scholar 

  21. Mimura, T., Yoshin, K., Hiyamizu, S. and Abe, M. (1981) High electron mobility transistor logic. Jpn. J. Appl. Phys., 20, L598.

    Article  Google Scholar 

  22. Howe, H. (1984) Microwave integrated circuits—an historical perspective. IEEE Trans. Microwave Theory Tech., 32, 991–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van de Roer, T.G. (1994). History. In: Microwave Electronic Devices. Microwave Technology Series, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2500-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2500-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-48200-7

  • Online ISBN: 978-1-4615-2500-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics