Antibody-Forming Cells (AFCs) in the Lung Lymphoid Tissue After Primary and Secondary Immunization Through Different Routes:A Semiquantitative Analysis in Adult Rats Using T Dependent (TNP-KLH) and T-Independent Antigens (TNP-LPS)

  • Luis Alonso
  • Aart van Appeldorf
  • Marcelino Banuelos
  • Maria G. Barrutia
  • Agustín G. Zapata
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 355)

Abstract

Despite pioneer reports emphasizing the mutual resemblances of the bronchus-associated lymphoid tissue (BALT) and the gut-associated lymphoid tissue (GALT), so claiming the relationship of BALT to the so-called mucosa-associated lymphoid tissue (MALT), the evidence is merely circumstantial. To date, there are important differences in the histological organization of both tissues1,2. The lymphoepithelium condition of the epithelium covering the lung lyraphoid aggregates can only be observed in locally immunized animals and even in that situation the existence of M-like cells in the epithelium is controversial2,3. Moreover, germinal centers have only been reported in the BALT after extensive immunization2.

Keywords

Migration Glycerine Acetone Respiration Germinal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.J. van der Brugge-Gamelkoorn, Structure and function of bronchus associated lymphoid tissue (BALT) in the rat. Ph. D. Thesis, Free University, Amsterdam (1986).Google Scholar
  2. 2.
    T. Sminia, G.J. van der Brugge-Gamelkoorn and S.H.M. Jeurissen, Structure and fonction of bronchus associated lymphoid tissue (BALT), Crit. Rev. Immunol. 9:119 (1989).PubMedGoogle Scholar
  3. 3.
    W. Pankow and P. von Wiehert, M cell in the immune system of the lung, Respiration 54:209 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    D.E. Bice and G.M. Shopp, Antibody responses after lung immunization, Exp. Lung Res. 14:133 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    N.F. Pierce and W.C. Cray, Cellular dissemination of priming for a mucosal immune response to cholera toxin in rats, J. Immunol. 127:2461 (1981).PubMedGoogle Scholar
  6. 6.
    P.G. Holt and J.D. Sedgwick, Suppresssion of Ig E responses following inhalation of antigen, Immunol. Today 8:14(1987).CrossRefGoogle Scholar
  7. 7.
    E.C. Lawrence, B.J. Theodore and R.R. Martin, Modulation of pokeweed-mitogen induced immunoglobulin secretion by human bronchoalveolar cells, Am. Rev. Respir. Dis. 126:248 (1982).PubMedGoogle Scholar
  8. 8.
    F.G.A. Delemarre, E. Claasen and N. van Rooijen, Primary in situ immune response in popliteal lymph nodes and spleen of mice after subcutaneous immunization with thymus-dependent or thymus-independent (type 1 and 2) antigens, Anat. Rec. 223:152 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    S.H.M. Jeurissen, E. Claasen, N. van Rooijen and G. Kraal, Intraintestinal priming leads to antigen specific Ig A memory cells in peripheral lymphoid organs, Immunology 56:417 (1985).PubMedGoogle Scholar
  10. 10.
    J. Biewenga, E.P. van Rees and T. Sminia, Induction and regulation of Ig A responses in the microenviroment of the gut, Clin. Immunol. Immunopathol. 67:1 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Luis Alonso
    • 1
  • Aart van Appeldorf
    • 1
  • Marcelino Banuelos
    • 1
  • Maria G. Barrutia
    • 1
  • Agustín G. Zapata
    • 1
  1. 1.Dept. of Cell BiologyFaculty of Biology, Complutense Univ.Spain

Personalised recommendations