Skip to main content

Abstract

The drug 5-fluorouracil (5-FU) has remained the main active drug against gastrointestinal malignancies. Both its tolerability and/or its efficacy have been increased through combination with folinic acid (FA) (1–4) or its administration by continuous venous infusion (5, 6). Both such regimens usually resulted in a threefold to fourfold improvement of tumor response rate in patients with metastatic colorectal cancer, as compared with standard 5-FU treatment. These figures, however, still were low (30%) and affected survival modestly (1–6). In addition, a correlation between 5-FU dose intensity (D.I.) and response rate was reported in patients with metastatic colorectal cancer (7). Thus any method which allows a significant increase in the D.I. of 5-FU may result in improved anticancer efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Machover D., Schwarzenberg L., Goldschmidt E., et al. Treatment of advanced colorectal and gastric adenocarcinomas with 5-FU combined with high dose folinic acid: a pilot study. Cancer Treat. Rep., 1982, 66: 1803–1807.

    PubMed  CAS  Google Scholar 

  2. Erlichman C., Fine S., Wong A. et al. A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J. Clin. Oncol., 1988, 6: 469–475.

    PubMed  CAS  Google Scholar 

  3. Poon M., O’Connell M., Moertel G. et al. Biochemical modulation of fluorouracil: evidence of significant improvement of survival and quality of life in patients with advanced colorectal carcinoma. J. Clin. Oncol., 1989, 7: 1407–1417.

    PubMed  CAS  Google Scholar 

  4. Petrelli N., Douglass H., Herrera L. et al. The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma: a prospective randomized phase III trial. J. Clin. Oncol., 1989, 7: 1419–1426.

    PubMed  CAS  Google Scholar 

  5. Sciffert P., Baker L., Reed M. et al. Comparison of continuously infused 5-fluorouracil with bolus injection in treatment of patients with colorectal adenocarcinoma. Cancer, 1975, 36: 123–128.

    Article  Google Scholar 

  6. Lokich J., Ahlgren J., Gullo J. et al. Prospective randomized comparison of continuous infusion fluorouracil with a conventional bolus schedule in metastatic colorectal carcinoma: a mid-Atlantic Oncology Program study. J. Clin. Oncol., 1989, 7: 425–432.

    PubMed  CAS  Google Scholar 

  7. Hryniuk W., Figueredo A., Goodyear M. Applications of dose-intensity to problems in chemotherapy of breast and colorectal cancer. Semin. Oncol., 1987, 14: 3–11.

    PubMed  CAS  Google Scholar 

  8. Haus E., Halberg F., Scheving L.E. et al. Increased tolerance of leukemic mice to arabinosyl cytosme given on schedule adjusted to circadian system. Science (Washington DC), 1972, 177: 80–81.

    Article  CAS  Google Scholar 

  9. Lévi F., Hrushesky W., Blomquist J. et al. Reduction of cis-diamminedichloroplatinum nephrotoxicity in rats by optimal circadian drug timing. Cancer Res., 1982, 42: 950–955.

    PubMed  Google Scholar 

  10. Hrushesky W., Lévi F., Halberg F; et al. Circadian stage dependence of cis-diamminedichloroplatinum lethal toxicity in rats. Cancer Res., 1982, 42: 945–949.

    PubMed  CAS  Google Scholar 

  11. Mormont M.C., Boughattas N., Lévi F. Mechanisms of circadian rhythms in the toxicity and the efficacy of anticancer drugs: relevance for the development of new analogs. In: Lemmer B., ed. Chronopharmacology: cellular and biochemical interactions. New York: Marcel Dekker, 1989, 395–437.

    Google Scholar 

  12. Boughattas A.N., Lévi F., Fouraier C. et al. Circadian rhythm in toxicities and tissue uptake of 1,2-diamminocyclohexane (trans-l)oxalatoplatinum(II) in mice. Cancer Res., 1989, 49: 3362–3368.

    PubMed  CAS  Google Scholar 

  13. Boughattas A.N., Lévi F., Fouraier C. et al. Stable circadian mechanisms of toxicity of two platinum analogs (cisplatin and carboplatin) despite repeated dosages in mice. J. Pharmacol. Exp. Ther., 1990, 255: 672–679.

    PubMed  CAS  Google Scholar 

  14. Roemeling R.v., Hrushesky W.: Determination of the therapeutic index of floxuridine by its circadian infusion pattern. J. Natl Cancer Inst., 1990, 82: 386–393.

    Article  Google Scholar 

  15. Dunlap J. Closely Watched clocks: molecular analysis of circadian rhythms in Neurospora and Drosophilia. Trends in Genetics, 1990, 65: 135–168.

    Google Scholar 

  16. Klein D., Moore R.Y., Reppert S. eds Suprachiasmatic nucleus. The mind’s clock. Oxford Univ. Pr. Inc., N.Y., USA; 1991, 467 pp.

    Google Scholar 

  17. Kornhauser J., Nelson D., Mayo K., et al. Regulation of jun-B messenger RNA and AP-1 activity by light and a circadian clock. Science, 1992, 255: 1581–1585.

    Article  PubMed  CAS  Google Scholar 

  18. Touitou Y., Haus E., eds Biological rhythms in clinical and laboratory medicine. Springer Verlag, Berlin, Heidelberg, 1992, 730 pp.

    Google Scholar 

  19. Reinberg A., Smolensky M., Labrecque G. Eds. Chronothérapeutique. Flammarion, Paris, 1991.

    Google Scholar 

  20. Rivard G., Infante-Rivard C., Hoyoux C. et al. Maintenance chemotherapy for childhood acute lymphoblastic leukemia: better in the evening. Lancet, 1985, 2: 1264–1266.

    Article  PubMed  CAS  Google Scholar 

  21. Hrushesky W. Circadian timing of cancer chemotherapy. Science, 1985, 228: 73–75.

    Article  PubMed  CAS  Google Scholar 

  22. Lévi F., Benavides M., Chevelle C. et al. Chemotherapy of advanced ovarian cancer with 4’-0-tetrahydropyranyl adriamycin (THP) and cisplatin: a phase II trial with an evaluation of circadian timing and dose intensity. J. Clin. Oncol., 1990, 8: 705–714.

    PubMed  Google Scholar 

  23. Bailleul F., Lévi F., Metzger G. et al. Chronotherapy of advanced breast cancer with continuous doxorubicin infusion via an implantable programmable device. 78th Ann. Meeting Amer. Assoc. Cancer Res., Atlanta (USA), May 20–23 1987. Proc. Am. Ass. Cancer Res., 1987, 28: 771.

    Google Scholar 

  24. Roemeling R.v., Hrushesky W. Circadian patterning of continuous floxuridine infusion reduces toxicity and allows higher dose intensity in patients with widespread cancer. J. Clin. Oncol., 1989, 7: 1710–1719.

    Google Scholar 

  25. Caussanel J.P., Lévi F., Brienza S. et al. Phase I trial of 5-day continuous venous infusion of oxaliplatinum at circadian-modulated vs constant rate. J. Natl Cancer Inst., 1990, 82: 1046–1050.

    Article  PubMed  CAS  Google Scholar 

  26. Deprés-Brummer P, Lévi F., Di Palma M. et al. A phase I trial of 21-day continuous venous infusion of a alpha-interferon at circadian rhythm modulated rate in cancer patients. J. Immunother., 1991, 10: 440–447.

    Article  PubMed  Google Scholar 

  27. Popovic P., Popovic V., Baughman J. Circadian rhythm and 5-fluorouracil toxicity in C3H mice. In: Biomed. Thermol., Alan Liss Inc., N.Y., USA, 1982, pp. 185–187.

    Google Scholar 

  28. Burns E., Beland S. Effects of biological time on the determination of the LD 50 of 5-fluorouracil in mice. Pharmacology (Basel), 1984, 28: 296–300.

    Article  CAS  Google Scholar 

  29. Gonzalez J., Sothern R., Thatcher G. et al. Substantial difference, in timing of murine susceptibility to 5-fluorouracil and FUdR. Proc. Am. Ass. Ccancer Rts., 1989, 30, 616 (abstract 2452).

    Google Scholar 

  30. Peters G., Van Dijk J., Nadal J., et al. Diurnal variation in the therapeutic efficacy of 5-fluorouracil against murine colon cancer. In Vivo, 1987, 1: 113–118.

    PubMed  CAS  Google Scholar 

  31. Minshull M., Gardner M. The effect of time of administration of 5-fluorouracil on leucopenia in the Rat. Eur. J. Cancer Clin. Oncol., 1984, 20: 857–858.

    Article  PubMed  CAS  Google Scholar 

  32. Gardner M., Plumb J. Diurnal variation in the intestinal toxicity of 5-fluorouracil in the rat. Clin. Sci., 1981, 61: 717–722.

    PubMed  CAS  Google Scholar 

  33. Rydell R., Wenneberg J., Willen R. Orcadian variation in cell cycle phase distribution in a squamous cell carcinoma xenograft; effects of cisplatin and fluorouracil treatment. In Vivo, 1990, 4: 385–390.

    PubMed  CAS  Google Scholar 

  34. Beau J., Lévi F., Motta R. The influence of the athymic mutation nude on the components of the circadian rhythm of activity in mice. Chronobiol. Intern., 1990, 7: 371–376.

    Article  CAS  Google Scholar 

  35. Harris B.E., Song R., He Y.J. et al. Circadian rhythm of rat liver dihydropyrimidine dehydrogenase. Possible relevance to fluoropyrimidine chemotherapy. Biochem. Pharmacol., 1988, 37: 4759–4762.

    Article  PubMed  CAS  Google Scholar 

  36. Daher G., Zhang R., Soon S.J., Diasio R. Circadian variation of fluoropyrimidine catabolic enzymes in rat liver: possible relevance to 5-fluorodeoxyuridine chemotherapy. Drug Metab. Disp., 1991, 19: 285–287.

    CAS  Google Scholar 

  37. Harris B.E., Song R., Soong SJ. et al. Circadian variation of 5-fluorouracil in isolated perfused rat liver. Cancer Res., 1989, 49: 6610. 6614.

    Google Scholar 

  38. Diasio R., Zhang R., Lu Z. et al. Circadian variation of fluoropyrimidine metabolic enzymes: importance to fluorodeoxyuridine (FdURD) chemotherapy. Proc 5th Intern. Conf. Chronopharmacol., Amelia Island, Fl., USA, July 12–16, 1992, IV-1 (abst).

    Google Scholar 

  39. El Kouni M., Naquib F. Circadian rhythm of hepatic pyrimidine metabolizing enzymes and plasma uridine concentration in mice. Proc 5th Intern. Conf. Chronopharmacol., Amelia Island, Fl., USA, July 12–16, 1992, IV-2 (abst.).

    Google Scholar 

  40. Zhang R., Lu E., Liu T. et al. Circadian rhythm of rat spleen cytoplasmic thymidine kinase: possible relevance to 5-fluorodeoxyuridine chemotherapy. Proc 5th Intern. Conf. Chronopharmacol., Amelia Island, Fl., USA, July 12–16, 1992, IV-3 (abst.).

    Google Scholar 

  41. Malmary-Nebot M., Labat C., Casanovas A. et al. Aspect chronobiologique de l’action du méthrotréxate sur la dihydrofolate réductase. Ann. Pharm. Fr., 1985, 43: 337–343.

    PubMed  CAS  Google Scholar 

  42. Labrecque G., Bélanger P., Doré F., Lalande M. Twenty-four variations in the distribution of labeled microspheres to the intestine, liver and kidneys. Ann. Rev. Chronopharmacol., 1988, 5: 445–448.

    Google Scholar 

  43. Scheving L.E., Burns E.R., Pauly J.E. et al. Circadian variations in cell division of the mouse alimentary tract, bone marrow and corneal epithelium. Anat. Rec., 1978, 191: 479–486.

    Article  PubMed  CAS  Google Scholar 

  44. Haus E., Lakatua D.J., Sackett-Lundeen L., et al. Circannual variation of intestinal cell proliferation in BDF1 male mice on three lighting regimens. Chronobiol. Intern., 1984, 1: 185–194.

    Article  CAS  Google Scholar 

  45. Kennedy M., Tutton P., Barkla D. Comparison of the circadian variation in cell proliferation in normal and neoplastic colonic epithelial cells. Cancer Lett., 1985, 28: 169–175.

    Article  PubMed  CAS  Google Scholar 

  46. Waldrop R., Saydjari R., Rubin N. et al. DNA synthetic activity in tumor bearing mice. Chronobiol Intern., 1989, 6: 237–243.

    Article  CAS  Google Scholar 

  47. Rubin N., Shayestehmehr M., Chad-Wofford D. et al. Effect of colostomy on the circadian rhythm in DNA synthesis in the rat colon. Chronobiol Intern., 1992, 9: 11–18.

    Article  CAS  Google Scholar 

  48. Stoney P., Halberg F., Simpson H. Circadian variation of colony-forming ability of presumably intact murine bone marrow cells. Chronobiologia, 1975, 2: 319–327.

    PubMed  CAS  Google Scholar 

  49. Lévi F., Blazsek L, Ferlé-Vidovic A. Orcadian and seasonal rhythms in murine bone marrow colony forming cells affect tolerance for anticancer agent 4′-tetrahydropyranyl Adriamycin (THP). Exp. Hematol., 1988, 16: 696–701.

    PubMed  Google Scholar 

  50. Perpoint B., Le Bousse-Kerdiles C., Clay D. et al. In vitro pharmacology of recombinant mouse IL-3 recombinant mouse GM-CSF and recombinant human G-CSF on murine myeloïd progenitor cells. Submitted for publication.

    Google Scholar 

  51. Petit E., Milano G., Lévi F. et al. Orcadian rhythm-varying plasma concentration of 5-fluorouracil during a five-day continuous venous infusion at a constant rate in cancer patients. Cancer Res., 1988, 48: 1676–1679.

    PubMed  CAS  Google Scholar 

  52. Gudausras G., Goldie J. The pharmacokinetics of high dose continuous infusions. Proc. Am. Assoc. Cancer Res., 1978, 19: 364 (abstr.).

    Google Scholar 

  53. Thiberville L., Compagnon P., Moore N. et al. Accumulation plasmatique du 5-fluorouracile chez l’insuffisant respiratoire. Rev. Mal. Resp., 1992, 111.

    Google Scholar 

  54. Metzger G., Comisso M., Massari C., Brienza S., Levi F., Misset J.L. Differences in time course of plasma levels of 5-fluorouracil (5-FU) during constant or chronomodulated infusion in cancer patients Proc. Am. Assoc. Cancer Res., 1992, 33: 534 (abstr.).

    Google Scholar 

  55. Harris B., Song R., Soong S., Diasio R.B. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels: evidence for circadian variations of plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res., 1990, 50: 197–201.

    PubMed  CAS  Google Scholar 

  56. Bastian G., Demarq C., Leteure F. et al. Pharmacokinetics of 5-fluorouracil: effect of association with cisplatinum during long term infusion. Proc. Am. Soc. Clin. Oncol., 1986, 5: 55 (abstr.).

    Google Scholar 

  57. Milano G. Personal communication.

    Google Scholar 

  58. Nowakowska-Dulawa E. Orcadian rhythm in 5-fluorouracil (FU) pharmacokinetics and tolerance. Chronobiologia, 1990, 17: 27–35.

    PubMed  CAS  Google Scholar 

  59. Tuchman M., Roemeling R. v., Lanning R. Source of variability of dehydropyrimidine dehydrogenase (DPD) activity in human blood mononuclear cells. In: Reinberg A., Smolensky M., Labrecque G., eds. Annual Rev. Chronopharmacol., Oxford, Pergamon, 1988, 349–402.

    Google Scholar 

  60. Diasio R.B., Harris B.E. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet., 1989, 16: 215–237.

    Article  PubMed  CAS  Google Scholar 

  61. Lemmer B., Nold G. Orcadian changes in estimated hepatic blood flow in healthy subjects. Brit. J. Clin. Pharm., 1991, 32: 627–629.

    Article  PubMed  CAS  Google Scholar 

  62. Scheving L.E. Mitotic activity in the human epidermis. Anat. Rec., 1959, 135: 7–19.

    Article  PubMed  CAS  Google Scholar 

  63. Brown W. A review and mathetical analysis of circadian rhythm in cell proliferation in mouse, rat and human epidermis. J. Invest. Dermatol., 1991, 97: 273–280.

    Article  PubMed  CAS  Google Scholar 

  64. Killman S.A., Cronkite Z.E.P., Fliedner T.M., Bond V.T. Mitotic indices of human bone marrow cells. 1. Number and cytologic distribution of mitoses. Blood, 1962, 19: 743–750.

    Google Scholar 

  65. Mauer A.M. Diurnal variation of proliferative activity in the human bone marrow. Blood, 1965, 26: 1–7.

    PubMed  CAS  Google Scholar 

  66. Smaaland R., Laerum O., Lote K. et al. DNA synthesis in human bone marrow is circadian stage dependent. Blood, 1991, 77: 2603–2611.

    PubMed  CAS  Google Scholar 

  67. Buchi K., Moore J., Hrushesky W. et al. Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenteroly, 1991, 101: 410–415.

    CAS  Google Scholar 

  68. Markiewick A., Lelek A., Panz B., et al. Chronomorphology of jejunum in man. Proc. XVIII Intern. Conf. on Chronobiol., (Leiden, July 12–17th, 1987) Chronobiologia, 1987, 14: 131 (abstr.).

    Google Scholar 

  69. Rietweld W., Boon M. Variation in size and glycogen content of exfoliating epithelial cells at different times of day. In: Chronobiology, 1982–1983, H. Kabat ed., S. Karger (Basel), 22–24.

    Google Scholar 

  70. Levi F., Brienza S., Misset J.L. et al. Circumvention of clinical resistance of metastatic colorectal cancer to 5-fluorouracil (5-FU) with circadian-rhythm modulated venous chemotherapy. Proc. Am. Soc. Clin. Oncol., 1192, 11: 171 (abstr.).

    Google Scholar 

  71. Berthault-Cvitkovic F., Soussan S., Brienza S. et al. Circadian-rhythm modulated chemotherapy with high-dose S-fluorouracil: a pilot study in patients with pancreatic adenocarcinoma. 1992, submitted for publication.

    Google Scholar 

  72. Houghton J., Maroda S., Phillips J. et al. Biochemical determinants of responsiveness to 5-fluorouracil and its derivatives in xenografts of human colorectal adenocarcinoma in mice. Cancer Res., 1989, 41: 144–149.

    Google Scholar 

  73. Rustum Y., Trave F., Zakrewsky S.F. et al. Biochemical and pharmacologic basis for potentiation of 5-fluorouracil action by leucovorin. NCI Monogr., 1987, 5: 165–170.

    PubMed  Google Scholar 

  74. Scanlon K., Newman E., Lu Y. et al. Biochemical basis for cisplatin and 5-fluorouracil synergism in human ovarian carcinoma cells. Proc. Natl. Acad. Sci. USA, 1986, 83: 8923–8925.

    Article  PubMed  CAS  Google Scholar 

  75. Loehrer P., Turner S., Kubilis P. et al. A prospective randimized trial of fluorouracil versus fluorouracil plus cisplatin in the treatment of metastatic colorectal cancer: a Hoosier Oncology Group trial. J. Clin. Oncol., 1988, 6: 642–648.

    PubMed  Google Scholar 

  76. Scheithauer W., Depisch D., Schiessel R. et al. Phase II evaluation of 5-fluorouracil, folinic acid and cisplatin in advanced-stage colorectal adenocarcinoma. Oncology, 1986, 46: 217–221.

    Article  Google Scholar 

  77. Cantrell J., Hart R., Taylor R. et al. Pilot trial of prolonged continuous infusion of 5-fluorouracil and weekly cisplatin in advanced colorectal cancer. Cancer Treat. Rep., 1987, 71: 615–618.

    PubMed  Google Scholar 

  78. Mathé G., Kidani Y., Triana K. et al. A phase I trial of trans-1-diammino cyclohexane oxalato-platinum (1-OHP). Biomed. Pharmacother., 1986, 40: 372–376.

    PubMed  Google Scholar 

  79. Mathé G., Kidani Y., Eriguchi M. et al. Oxalato-platinum or 1-OHP, a third generation platinum complex: an experimental and clinical appraisal and preliminary comparison with cisplatinum and carboplatinum. Biomed. Pharmacother., 1989, 43: 237–250.

    Article  PubMed  Google Scholar 

  80. Lévi F., Misset J.L., Brienza S. A chronopharmacologic phase II clinical trial with 5-fluorouracil, folinic acid and oxaliplatinum using an ambulatory multichannel programmable pump: high antitumor effectiveness against metastatic colorectal cancer. Cancer, 1992, 69 (4): 893–900.

    Article  PubMed  Google Scholar 

  81. Lévi F., Brienza S., Misset J.L. Circumvention of clinical resistance of metastatic colorectal cancer to 5-fluorouracil (5-FU) with circadian-rhythm modulated venous chemotherapy. Proc. Am. Soc. Clin. Oncol., 1992, 11: 171 (abstr.).

    Google Scholar 

  82. Levi F., Perpoint B., Garufi C. et al. Oxaliplatin activity against metastatic colorectal cancer. A phase II study of 5-day continuous venous infusion at circadian-rhythm modulated rate. 1992, submitted for publication.

    Google Scholar 

  83. Bjarnason G., Kerr I., Doyle N. et al. Phase I study of S-fluorouracil and leucovorin by 14-day continuous infusion chronotherapy in patients with metastatic adenocarcinoma. Proc. 5th Intern. Conf. Chronopharmacol., Amelia Island, Fl., USA, July 12–16 1992, IV-5 (abstr.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lévi, F. et al. (1993). Implications of Chronobiology for 5-Fluorouracil (5-Fu) Efficacy. In: Rustum, Y.M. (eds) Novel Approaches to Selective Treatments of Human Solid Tumors. Advances in Experimental Medicine and Biology, vol 339. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2488-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2488-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6060-5

  • Online ISBN: 978-1-4615-2488-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics