Statics and Kinetics of Phase Transformations In Bcc Fe-Cr

  • L. Reinhard
Part of the NATO ASI Series book series (NSSB, volume 319)

Abstract

The Fe-Cr equilibrium phase diagram exhibits a bcc solid solution (α-Fe-Cr) in a wide concentration range at elevated temperatures. The ?-phase which occurs around 50% Cr decomposes eutectoidally below ≈700 K into Fe-rich and Cr-rich bcc phases. Since the formation of ? is sluggish, a metastable miscibility gap for α-Fe-Cr is observed well above this temperature. Recently, demixing in the Fe-Cr system, which is responsible for the “475°C embrittlement” of ferrite chromium steels has received considerable experimental attention. In the following we present applications of the Monte-Carlo technique in the framework of the three-dimensional Ising model to the problem of phase separation in α-Fe-Cr and compare the simulation results with experimental findings.

Keywords

Chromium Ferrite Mera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Reinhard, J. L. Robertson, S. C. Moss, G. E. Ice, P. Zschack, and C. J. Sparks Phys. Rev. B, 45 (1992), 2662.ADSCrossRefGoogle Scholar
  2. 2.
    V. Gerold and J. Kern, Acta Metall., 35 (1987), 393.CrossRefGoogle Scholar
  3. 3.
    P. E. A. Turchi, M. Sluiter and G. M. Stocks, Mat. Res. Soc. Symp. Proc., 213 (1990), 75.CrossRefGoogle Scholar
  4. 4.
    R. O. Williams, Trans. TMS-AIME, 212 (1958), 497.Google Scholar
  5. 5.
    S. M. Dubiel and G. Inden, Z. Metallkde., 79 (1987), 544.Google Scholar
  6. 6.
    S. Hertzman and B. Sundman, Calphad 6 (1982), 67.CrossRefGoogle Scholar
  7. 7.I. Mirabeau, M. Hennion and G. Parette, Phys. Rev. Lett., 53 (1984), 687.ADSCrossRefGoogle Scholar
  8. 8.
    P. E. A. Turchi, L. Reinhard, M. Sluiter, and G. M. Stocks, to be published.Google Scholar
  9. 9. A. Finel and F. Ducastelle, Phase Transformations in Solids, T. Tsalakos, ed. (North Holland, Amsterdam 1984), p. 293.Google Scholar
  10. 10.
    Ye. Z. Vintaykin, V. N. Dmitriyev, and V. Yu. Kolontsov, Fiz. Metal. Metalloved., 29 (1970), 1257.Google Scholar
  11. 11.
    J. C. LaSalle and L.H. Schwarz, Acta MetalL, 34 (1985), 989.CrossRefGoogle Scholar
  12. 12.
    M. Furusaka, Y. Ishikawa, and M. Mera, Phys. Rev. Lett., 54 (1985), 2611.ADSCrossRefGoogle Scholar
  13. 13.
    S. Katano and M. Iizumi, Phys. Rev. Lett., 52 (1984), 835.ADSCrossRefGoogle Scholar
  14. 14.
    F. Bley, Acta MetalL Mater., 40 (1992) 1505.CrossRefGoogle Scholar
  15. 15.
    J. L. Lebowitz, J. Marro and M. H. Kalos, Acta MetalL, 30 (1982), 297.CrossRefGoogle Scholar
  16. 16.
    B. Fultz, Acta MetalL, 37 (1989) 823.CrossRefGoogle Scholar
  17. 17.
    D. W. Herrmann, Z. Phys. B, Condensed Matter, 61 (1985), 311.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • L. Reinhard
    • 1
  1. 1.Condensed Matter Division (L-268)Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations