Advertisement

The Energetics of Ordered Intermetallic Alloys (of the Transition Metals)

  • R. E. Watson
  • M. Weinert
  • J. W. Davenport
  • G. W. Fernando
  • L. H. Bennett
Part of the NATO ASI Series book series (NSSB, volume 319)

Abstract

Theory and experiment are both useful in the development of new scientifically interesting and technologically relevent materials. On the theory front, one would like to predict the occurrence of stable and metastable phases as well as gaining insights into the chemical bonding which underlies the phase formation. In addition, one would like to explore the mechanical, electronic, optical and other properties of the phases in question. One of the first steps in doing this is to explore the atomically ordered phases and it will be the ordered transition metal alloys which will be of concern of this chapter.

Keywords

Atomic Sphere Band Calculation Band Theory Gradient Correction Band Filling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.R. deBoer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen. “Cohesion in Metals, Transition Metal Alloys,” North Holland, Amsterdam (1989).Google Scholar
  2. 2.
    D.G. Pettifor, J. Phys. C3:367 (1970).ADSGoogle Scholar
  3. 3.
    R.E. Watson and L.H. Bennett, Scripta Metall. 19:535 (1985).CrossRefGoogle Scholar
  4. 4.
    D.R. Nelson, Phys. Rev. B28:5515 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    J.D. Bernal, Nature 185:68 (1960).ADSCrossRefGoogle Scholar
  6. 6.
    J.D. Bernal, Proc. Roy. Soc. (London) A280:299 (1964).ADSCrossRefGoogle Scholar
  7. 7.
    R.E. Watson and L.H. Bennett, Acta Metall. 32:477 (1984); ibid 32:491 (1984).CrossRefGoogle Scholar
  8. 8.
    L.H. Bennett and R.E. Watson in: “High-Temperature Alloys: Theory and Design,” J.O. Stiegler, ed., The Metallurgical Society, AIME, Warrendale, PA (1984).Google Scholar
  9. 9.
    R.E. Watson and L.H. Bennett, Phys. Rev. B18:6439 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    P. Villars and L.D. Calvert in: “Pearson’ s Handbook of Crystallographic Data for Intermetallic Phases,” ASM, Second Edition, Materials Park, OH (1991).Google Scholar
  11. 11.
    P. Villars, J. Less-Common Met. 92:215 (1983); ibid 99:33 (1984); ibid 102:199 (1984); P. Villars and F. Hulliger, J.Less-Common Met. 132:289 (1987).CrossRefGoogle Scholar
  12. 12.
    P. Villars, J.C. Phillips, and H.S. Chen, Phys. Rev. Lett. 57:3085 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    K.M. Rabe, A.R. Kortan, J.C. Phillips, and P. Villars, Phys. Rev. B43:6280 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Davenport, Phys. Rev. B29:2896 (1984); G.W. Fernando, J.W. Davenport, R.E. Watson and M. Weinert, ibid B40:2757 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Perrdew, Physica B172:1 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    G. Grimvall, Phys. Scr. 12:173 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    R.E. Watson and M. Weinert, Phys. Rev. B30:1641 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    L. Kaufman and H. Bernstein in: “Computer Calculations of Phase Diagrams,” Academic, New York (1970).Google Scholar
  19. 19.
    R.E. Watson, G.W. Fernando, M. Weinert, Y.J. Wang, and J.W. Davenport, Phys. Rev. B43:1455 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    O. Gunnarsson and R.O. Jones, Phys. Rev. B31:7588 (1985); see also J. Harris and R.O. Jones, J. Chem. Phys. 68: 3316 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    M. Blume and R.E. Watson, Proc. Roy. Soc. (London) A270:127 (1962).ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    T. Zeigler, A. Rauk, and E.J. Baerends, Theoret. Chim. Acta (Berlin) 43:261 (1977); M. Lannoo, G.A. Aaraff, and M. Schluter, Phys. Rev. B24.943 (1981).CrossRefGoogle Scholar
  23. 23.
    U. vonBarth, Phys. Rev. A20:1693 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    J.H. Wood, J. Phys. B13:1 (1980).ADSGoogle Scholar
  25. 25.
    e.g. O. Eriksson, M.S.S. Brooks, and B. Johansson, J. Phys. Cond. Matt. 1:4005 (1989); Phys. Rev. B41:9087 (1990).ADSCrossRefGoogle Scholar
  26. 26.
    M.R. Norman, Phys. Rev. Lett. 41:7311 (1990); Phys. Rev. B44.1364 (1991).Google Scholar
  27. 27.
    P.S. Rudman, J. Stinger and R.I. Jaffee, in: “Phase Stability in Metals and Alloys,” McGraw-Hill, New York (1967).Google Scholar
  28. 28.
    G.W. Fernando, R.E. Watson, M. Weinert, Y.J. Wang, and J.W. Davenport, Phys. Rev. B41:11813 (1990).ADSCrossRefGoogle Scholar
  29. 29.
    N. Saunders, A.P. Miodownik, and A.T. Dinsdale, CALPHAD 12:351 (1988).CrossRefGoogle Scholar
  30. 30.
    R.E. Watson, J.W. Davenport, and M. Weinert, Phys. Rev. B35:508 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    K. Fitzner and O.J. Kleppa, Met. Trans. 23A:997 (1992); K. Fitzner, N. Selhaoui, and O.J. Kleppa, Met. Trans. (in press).CrossRefGoogle Scholar
  32. 32.
    R.E. Watson, M. Weinert, and G.W. Fernando, Phys. Rev. B43:1446 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    S.S. Jaswal, Y.G. Ren, and D.J. Sellmyer, J. Appl. Phys. 67:4564 (1990).ADSCrossRefGoogle Scholar
  34. 34.
    R.E. Watson, J. Hudis, and M.L. Perlman, Phys. Rev. B4:4139 (1971).ADSCrossRefGoogle Scholar
  35. 35.
    P.A. Schultz and J.W. Davenport, Scripta Metall. (in press).Google Scholar
  36. 36.
    N. Selhaoui and J.C. Gachon, Anales de Fisica B86:57 (1990).Google Scholar
  37. 37.
    R.E. Watson, M. Weinert, J.W. Davenport, and G.W. Fernando, Phys. Rev. B39:10, 761 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. E. Watson
    • 1
  • M. Weinert
    • 1
  • J. W. Davenport
    • 1
  • G. W. Fernando
    • 2
  • L. H. Bennett
    • 3
  1. 1.Department of PhysicsBrookhaven National LaboratoryUptonUSA
  2. 2.Department of PhysicsUniversity of ConnecticutStorrsUK
  3. 3.Metallurgy DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations