On the Hierarchy of the Generalized KdV Equations

  • Carlos E. Kenig
  • Gustavo Ponce
  • Luis Vega
Part of the NATO ASI Series book series (NSSB, volume 320)


We consider a sequence of one-dimensional dispersive equations. These equations contain the KdV hierarchy as well as several higher order models arising in both physics and mathematics. We obtain conditions which guarantee that the corresponding initial value problem is locally and globally well-posed in appropiated function spaces. Our method is quite general and can be used to study other dispersive systems and related problems.


Solitary Wave Initial Value Problem High Order Model Nonlinear Schrodinger Equation Water Wave Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W. Craig, T. Kappeler and W. A. Strauss, Gain of regularity for equations of KdV type, preprint, to appear in Ann. IHP, Analyse Nonlineaire.Google Scholar
  2. 2.
    C. S. Gardner, J. M. Greene, M. D. Kruskaland R. M. Miura, A method for solving the Kortewegde Vries equation, Phys. Rev. Letters 19 (1967), 1095–1097.ADSMATHCrossRefGoogle Scholar
  3. 3.
    T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math. 8 (1983), 93–128.Google Scholar
  4. 4.
    C. E. Kenig, G. Ponce and L. Vega, Oscillatory Integrals and Regularity of Dispersive Equations, Indiana University Math. J. 40 (1991), 33–69.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    C. E. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations, to appear in Ann. IHP, Analyse Nonlineaire.Google Scholar
  6. 6.
    C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,preprint.Google Scholar
  7. 7.
    C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for the maximal function associated to the Schrödinger equation, Trans. Amer. Math. Soc. 230 (1983), 239–246.MathSciNetGoogle Scholar
  8. 8.
    S. Kichenassamy and P. J. Olver, Existence and Non-existence of solitary waves solutions to higher order model evolution equations, preprint.Google Scholar
  9. 9.
    P. D. LaxIntegrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1965), 467–490.MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Ponce, Lax pairs and higher order models for water waves, to appear in J. Diff. Eqs.Google Scholar
  11. 11.
    J.-C. SautSur quelques généralisations de l’ équations de Korteweg-de Vries, II, J. Diff. Eqs. 33 (1979), 320–335.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    M. Schwarz Jr., The initial value problem for the sequence of generalized Korteweg-de Vries equation, Advances in Math. 54 (1984), 22–56.MATHCrossRefGoogle Scholar
  13. 13.
    R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705–714.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    L. Vega, Doctoral Thesis, Universidad Autonoma de Madrid, Spain (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Carlos E. Kenig
    • 1
  • Gustavo Ponce
    • 2
  • Luis Vega
    • 3
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Facultad de CienciasUniversidad Autonoma de Madrid CantoblancoMadridSpain

Personalised recommendations