Skip to main content

The Behavior of Solutions of the NLS Equation in the Semiclassical Limit

  • Chapter
Singular Limits of Dispersive Waves

Part of the book series: NATO ASI Series ((NSSB,volume 320))

Abstract

We report a numerical and theoretical study of the generation and propogation of oscillations in the semiclassical limit (h → 0) of the Nonlinear Schrödinger equation. In a general setting of both dimension and nonlinearity, we identify essential differences between the “defocusing” and “focusing” cases. Numerical comparisons of the oscillations are made between the linear (“free”) and the cubic (defocusing and focusing) cases in one dimension. The integrability of the one-dimensional cubic NLS is exploited to give a complete global characterization of the weak limits of the oscillations in the defocusing case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Bronski and D.W. McLaughlin, Semiclassical Behavior in the NLS Equation: Optical Shocks-Focusing Instabilities, in this volume.

    Google Scholar 

  2. N. Ercolani, S. Jin, C.D. Levermore and W. MacEvoy, The Zero Dispersion Limit of the NLS/mKdV Hierarchy for the Nonselfadjoint ZS Operator, preprint (1992).

    Google Scholar 

  3. H. Flaschka, M.G. Forest and D.W. McLaughlin, Multiphase Averaging and the Inverse Spectral Solutions of the Korteweg-de Vries Equation, Comm. Pure Appl. Math. 33 (1980), 739–784.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. B. Fornberg and G.B. Whitham, A Numerical and Theoretical Study of Certain Nonlinear Wave Phenomena, Phil. Trans. Roy. Soc. A 289 (1978), 373–404.

    MathSciNet  ADS  Google Scholar 

  5. H. Flaschka, A.C. Newell and T. Ratiu, Kac-Moody Lie Algebras and Soliton Equations II: Lax Equations Associated with A 1 (1), Physica D 9 (1983), 300–323.

    MathSciNet  ADS  Google Scholar 

  6. M.G. Forest and J.E. Lee, Geometry and Modulation Theory for Periodic Nonlinear Schrödinger Equation, in “Oscillation Theory, Computation, and Methods of Compensated Compactness”, C. Dafermos, J.L. Erickson, D. Kinderleher and M. Slemrod, eds, IMA Volumes on Mathematics and its Applications 2, Springer-Verlag, New York (1986), 35–69.

    Chapter  Google Scholar 

  7. C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Method for Solving the KortewegdeVries Equation, Phys. Rev. Lett. 19 (1967), 1095–1097.

    Article  ADS  MATH  Google Scholar 

  8. R. Indik and M.A. Wolfson, (private communication).

    Google Scholar 

  9. S. Jin, C.D. Levermore and D.W. McLaughlin, The Semiclassical Limit for the Defocusing Nonlinear Schrödinger Hierarchy, preprint (1991).

    Google Scholar 

  10. P.D. Lax and C.D. Levermore, The Zero Dispersion Limit of the Korteweg-deVries Equation, Proc. Nat. Acad. Sci. USA 76 #8 (1979), 3602–3606.

    Article  MathSciNet  ADS  Google Scholar 

  11. P.D. Lax and C.D. Levermore, The Small Dispersion Limit of the Korteweg-de Vries Equation I, II, III,Comm. Pure Appl. Math. 36 (1983), 253–290, 571–593, 809–829.

    Google Scholar 

  12. P.D. Lax, C.D. Levermore and S. Venakides The Generation and Propagation of Oscillations in Dispersive IVPs and Their Limiting Behavior, in “Important Developments in Soliton Theory 1980–1990”, T. Fokas and V.E. Zakharov eds., Springer-Verlag, New York (to appear in 1992).

    Google Scholar 

  13. S. Venakides, The Generation of Modulated Wavetrains in the Solution of the Korteweg - deVries Equation, Comm. Pure Appl. Math. 38 (1985), 883–909.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Venakides, The Zero Dispersion Limit of the Korteweg-deVries Equation with Periodic Initial Data, AMS Trans. 301 (1987), 189–225.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Venakides, Higher Order Lax-Levermore Theory, Comm. Pure Appl. Math. 43 (1990), 335–362.

    Article  MathSciNet  MATH  Google Scholar 

  16. G.B. Whitham, Non-Linear Dispersive Waves, Proc. Royal Soc. London Ser. A 283 (1965), 238–261.

    Article  MathSciNet  ADS  Google Scholar 

  17. G.B. Whitham, Linear and Nonlinear Waves, J. Wiley, New York (1974).

    MATH  Google Scholar 

  18. V.E. Zakharov and A.B. Shabat, Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media, Soy. Phys. JETP 34 (1973), 62–69.

    MathSciNet  ADS  Google Scholar 

  19. V.E. Zakharov and A.B. Shabat, Interaction Between Solitons in a Stable Medium, Sov. Phys. JETP 37(5) (1973), 823–828.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jin, S., Levermore, C.D., McLaughlin, D.W. (1994). The Behavior of Solutions of the NLS Equation in the Semiclassical Limit. In: Ercolani, N.M., Gabitov, I.R., Levermore, C.D., Serre, D. (eds) Singular Limits of Dispersive Waves. NATO ASI Series, vol 320. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2474-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2474-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6054-4

  • Online ISBN: 978-1-4615-2474-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics