Advertisement

Effect of Acute and Chronic Administration of Ethanol on c-fos Expression in Brain

  • Fei Le
  • Peter Wilce
  • David Hume
  • Brian Shanley

Abstract

Trans-synaptic activation of neurons occurs over a time frame ranging from milliseconds to hours. Recently, it has been shown that the slower long-term responses, which are thought to underlie neuronal plasticity, are associated with induction of gene expression. The genes involved fall into two major groups: the cellular immediate early genes (IEGs), where transcription is activated rapidly and transiently within minutes of stimulation (Greenberg et al, 1985; Morgan and Curran, 1986) and the late response genes, where expression is induced more slowly over a period of hours (Merlie et al., 1984; Castelluci et al., 1988).

Keywords

NMDA Receptor GABAA Receptor Kainic Acid Ethanol Vapour Ethanol Withdrawal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castelluci, V.F., Kennedy, T.E., Kandel, E.R., and Goelet, P., 1988, A quantitative analysis of 2-D gels identifies proteins in which labelling is increased following long-term sensitization in Aplysia, Neuron 1: 321.CrossRefGoogle Scholar
  2. Dave, J.I., Tabakoff, B., and Hoffman, P.L., 1990, Ethanol withdrawal seizures produce increased c-fos mRNA in mouse brain, Mol Pharmacol, 37: 367.PubMedGoogle Scholar
  3. Dave, J.I., Tabakoff, B., and Hoffman, P.L., 1990, Ethanol withdrawal seizures produce increased c-fos mRNA in mouse brain, Mol Pharmacol, 37: 367.PubMedGoogle Scholar
  4. Dragunow, M., and Faull, R., 1989, The use of c-fos as a metabolic marker in neuronal pathway tracing, J Neurosci Meth. 29: 261.CrossRefGoogle Scholar
  5. Dragunow, M., and Robertson, H.A., 1988, Localization and induction of c-fos protein-like immunoreactive material in the nuclei of adult mammalian neurons, Brain Res. 440: 252.PubMedCrossRefGoogle Scholar
  6. Grant, K.A., Valverius, P., Hudspith, M., and Tabakoff, B., 1990, Ethanol withdrawal seizures and the NMDA receptor complex, Eur J Pharmacol. 176: 289.PubMedCrossRefGoogle Scholar
  7. Greenberg, M.E., Greene, L.A., and Ziff, E.B., 1985, Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC 12 cells, J Biol Chem. 260: 14101.PubMedGoogle Scholar
  8. Greenberg, M.E., Ziff, E.B., and Greene, L.A., 1986, Stimulation of neuronal acetylcholine receptors induces rapid gene transcription, Science 234: 80.PubMedCrossRefGoogle Scholar
  9. Harris, R.A., Allan, A.M., Daniell, L.C., and Nixon, C., 1988, Antagonism of ethanol and pentobarbital actions by benzodiazepine inverse agonists: neurochemical studies, J Pharmacol Exp Ther. 247: 1012.PubMedGoogle Scholar
  10. Hillmann, M., Wilce, P.A., and Shanley, B.C., 1988, Effects of chronic ethanol exposure on the GABA-benzodiazepine receptor complex in rat brain, Neurochem Int. 13: 69.PubMedCrossRefGoogle Scholar
  11. Le, F., Wilce, P., Cassady, I., Hume, D., and Shanley, B., 1990, Acute administration of ethanol suppresses pentylenetetrazole-induced c-fos expression in rat brain, Neurosci Lett. 120: 271.PubMedCrossRefGoogle Scholar
  12. Le, F., Wilce, P., Cassady, I., Hume, D., and Shanley, B., 1990, Acute administration of ethanol suppresses pentylenetetrazole-induced c-fos expression in rat brain, Neurosci Lett. 120: 271.PubMedCrossRefGoogle Scholar
  13. Lundquist, F., 1959, The determination of ethyl alcohol in blood and tissues, Meth Biochem Anal. 7: 215Google Scholar
  14. Marangos, P.J., and Boulenger, J.P., 1985, Basic and clinical aspects of adenosinergic neuromodulation, Neurosci Behav Rev. 9: 421.CrossRefGoogle Scholar
  15. Merlie, J.P., Isenberg, K.E., Russell, S.D. and Sanes, J.R., 1984, Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe, J Cell Biol. 99: 332.PubMedCrossRefGoogle Scholar
  16. Mönier, H., Sieghart, W., Richards, J.G., and Hunkelev, W., 1984, Photo-affinity labelling of benzodiazepine receptors with a partial inverse agonist, Eur J Pharmacol. 102: 181.Google Scholar
  17. Morgan, J.I., Cohen, D.R., Hempstead, J.L. and Curran, T., 1987, Mapping patterns of c-fos expression in the central nervous system after seizure, Science 237: 192.PubMedCrossRefGoogle Scholar
  18. Morgan, J.I. and Curran, T., 1986, Role of ion flux in the control of c-fos expression, Nature 332: 552.CrossRefGoogle Scholar
  19. Morgan, P.F. and Linnoila, M., 1991, Regional induction of c-fos mRNA by NMDA: a quantitative in situ hybridization study, NeuroReport 2: 251.PubMedCrossRefGoogle Scholar
  20. Morgan, P.F., Nadi, N.S., Karanian, J. and Linnoila, M., 1992, Mapping rat brain structures activated during ethanol withdrawal: role of glutamate and NMDA receptors, Eur J Pharmacol. 255: 217.Google Scholar
  21. Morrow, A.L., Suzdak, P.D., Karanian, J.W. and Paul, S.M., 1988, Chronic ethanol administration alters GABA, pentobarbital and ethanol mediated 36Cl- uptake in cerebral cortical synaptoneurosomes, J Pharm Exp Ther. 246: 158.Google Scholar
  22. Nutt, D.J., and Lister, R.G., 1987, The effect of the imidobenzodiazepine, Ro15-4513, on the anticonvulsant effects of diazepam, sodium pentobarbital and ethanol, Brain Res. 413: 193.PubMedCrossRefGoogle Scholar
  23. Palmer, M.R., Van Horne, C.G., Harlan, J.T., and Moore, E.A., 1988, Antagonism of ethanol effects on cerebellar Purkinje neurons by the benzodiazepine agonists, Ro15-4513 and FG 7142: electrophysiological studies, J Pharmacol Exp Ther. 247: 1018.PubMedGoogle Scholar
  24. Sagar, S.M., Sharp, F.R., and Curran, T., 1989, Expression of c-fos protein in brain: metabolic mapping at the cellular level, Science 240: 1328–1331.CrossRefGoogle Scholar
  25. Sieghart, W., Eichinger, A., Richards, J.G., and Möhler, J., 1987, Photo-affinity labelling of benzodiazepine receptor proteins with the partial inverse agonist [3H]Ro15-4513: a biochemical and autoradiographic study, J Neurochem. 48: 46.PubMedCrossRefGoogle Scholar
  26. Squires, R.F., Saederup, E., Crawley, J.N., Skolnick, P., and Paul, S.M., 1984, Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain, Life Sci. 35: 1439.PubMedCrossRefGoogle Scholar
  27. Suzdak, P.D., Glowa, J.R., Crawley, J.N., Schwartz, R.D., Skolnick, P., and Paul, S.M., 1986a, A selective imidobenzodiazepine antagonist of ethanol in the rat, Science 234: 1243.PubMedCrossRefGoogle Scholar
  28. Suzdak, P.D., Schwartz, R.D., Skolnick, P., and Paul, S.M., 1986b, Ethanol stimulates gamma-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes, Proc Natl Acad Sci. 83: 4071.PubMedCrossRefGoogle Scholar
  29. Ticku, M.K., Lowrimore, P., and Lehoullier, P., 1986, Ethanol enhances GABA-induced 36Cl- influx in primary spinal cord cultured neurons, Brain Res Bull. 17: 123.PubMedCrossRefGoogle Scholar
  30. Ward, L.C., 1987, Animal models of chronic alcohol ingestion: the liquid diet, Drug Alc Depend. 19: 333.CrossRefGoogle Scholar
  31. Wilson, M.C. and Higgins, G.A., 1989, In Situ Hybridisation, in “Neuromethods: Molecular Neurobiological Techniques”, Vol 16, A.A. Boulton, G.B. Baker and A.T. Campagnoni, eds., Humana Press, New Jersey.Google Scholar
  32. Wong, E.H.F., Kemp, J.A., Priestly, T., Knight, A.R., Woodruff, G.N., and Iversen, L.L., 1986, The anticonvulsant, MK-801, is a potent N-methyl-D-aspartate antagonist, Proc Natl Acad Sci. 83: 7104.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Fei Le
    • 1
  • Peter Wilce
    • 1
  • David Hume
    • 1
  • Brian Shanley
    • 1
  1. 1.Alcohol Research Unit Department of BiochemistryUniversity of QueenslandAustralia

Personalised recommendations