Molecular Mechanisms of Alcohol Neurotoxicity

  • Fulton T. Crews
  • Hunter Newsom
  • Mark Gerber
  • Colin Sumners
  • L. Judson Chandler
  • Gerhard Freund


Heavy alcohol consumption over a period of years can lead to cognitive and neurological impairments. Studies have indicated that alcoholics have greatly reduced brain volume. Computer tomographic studies of the brains of alcoholics have indicated that chronic alcoholism leads to enlargement of the ventricles, decreases in tissue volume and increases in cerebral spinal fluid volume, i.e. brain shrinkage (Pfefferbaum et al. 1992). Although changes are somewhat similar to those that occur during normal aging, the increase in size of the lateral ventricles and the increase in the cortical space between sulci clearly indicate that the brain of alcoholics have a decrease in cellular mass above that found in age matched non-alcoholics (Pfefferbaum et al., 1992; Jernigan et al., 1992). The increases in cerebral spinal fluid spaces are particularly associated with loss of the gray matter with some reduction also occurring in white matter. These losses in cortical tissue are possibly an acceleration of age-induced effects as well as the cumulative toxicity that occurs during a lifetime of chronic alcohol exposure.


Nitric Oxide NMDA Receptor Excitatory Amino Acid Chronic Ethanol Acute Ethanol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, A. M. and Harris, R. A., 1986, GABA and alcohol actions: Neurochemical studies of long sleep and short sleep mice, Life Sci. 39: 2005.Google Scholar
  2. Barnard, E. A., Ambrosini, A., Bateson, A. N., Darlison, M. G., Harvey, R. J., Henley, J. M., Hutton, M. L., Ishimaru, H., Rodriguez-Ithurralde, D., Sudan, H., and Usherwood, P. N. R., 1992, Purification, reconstitution and DNA cloning of novel excitatory animo acid receptors, in: “Excitatory Amino Acids”, R.P. Simon, ed., Thieme Medical Publishers, Inc., Stuttgart, N.Y., pp:3–7.Google Scholar
  3. Bohme, G. A., Bon, C., Stutzman, J. M., Doble, A. and Blanchard, J. C., 1991, Possible involvement of nitric oxide in long-term potentiation, Eur. J. Pharmacol. 199: 379.PubMedCrossRefGoogle Scholar
  4. Boulter, J., Bettler, B., Dingledine, R., Duvoisin, R., Egebjerg, J., Gasic, G., Hartley, M., Hermans-Borgmeyer, I., Hollmann, M., Hughes, T. E., Hume, R. I., Moll, C., Rogers, S., and Heinemann S., 1992, Molecular biology of the glutamate receptors, in: “Excitatory Amino Acids”, R. P. Simon, ed., Thieme Medical Publishers, Inc., Stuttgart, N.Y., pp:9–13.Google Scholar
  5. Bredt, D. S., and Snyder, S. H., 1990, Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme, Proc. Natl. Acad. Sci. USA. 87: 682.PubMedCrossRefGoogle Scholar
  6. Brennan, C. H., Crabbe, J., and Littleton, J. M., 1990, Genetic regulation of dihydropyridine-sensitive calcium channels in brain may determine susceptibility to physical dependence on alcohol, Neuropharmacol. 29: 429.CrossRefGoogle Scholar
  7. Brennan, C. H., Lewis, A., and Littleton, J. M., 1989, Membrane receptors, involved in up-regulation of calcium channels in bovine adrenal chromaffin cells, chronically exposed to ethanol, Neuropharmacol. 28: 1303.CrossRefGoogle Scholar
  8. Cala, L. A., Jones, B., Burns, P., Davis, R. E., Stenhouse, N., and Mastaglia, F. L., 1983, Results of computerized tomography, psychometric testing and dietary studies in social drinkers, with emphasis on reversibility after abstinence, Med. J. Aust. 2: 264.PubMedGoogle Scholar
  9. Carlen, P. L., Wortzman, G., Holgate, R. C., Winkinson, D. A., and Rankin, J. G., 1978, Reversible cerebral atrophy in recently abstinent chronic alcoholics measured by computer tomographic scans, Science. 200: 1076.PubMedCrossRefGoogle Scholar
  10. Chandler, L. J., Guzman, N., Crews, F. T., and Sumners, C., 1992(a), Induction of nitric oxide synthase in rat brain microglia, Soc. Neurosci. (Abst). 18: 633.Google Scholar
  11. Chandler, L. J., Guzman, N., Crews, F. T., and Sumners, C., 1992(a), Induction of nitric oxide synthase in rat brain microglia, Soc. Neurosci. (Abst). 18: 633.Google Scholar
  12. Chandler, L.J., Newsom, H., Sumners, C., and Crews, F.T., 1993, Chronic ethanol exposure potentiates NMDA excitotoxicity in cerebral cortical neurons, submitted to J. Neurochem.Google Scholar
  13. Choi, D. W., 1990, The Role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13: 171.PubMedCrossRefGoogle Scholar
  14. Choi, D. W., Koh, J., and Peters, S., 1988, Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists, J. Neurosci. 8: 185.PubMedGoogle Scholar
  15. Clark, G. D., 1989, Role of excitatory amino acids in brain injury caused by hypoxia-ischemia, status epilepticus, and hypoglycemia, Clin. Perinatol. 16: 459.PubMedGoogle Scholar
  16. Clark, M., and Dar, M. S., 1989, Effect of acute ethanol on release of endogenous adenosine from rat cerebellar synaptosomes, J. Neurochem. 52: 1859.PubMedCrossRefGoogle Scholar
  17. Cotman, C. W., Bridges, R. J., Taube, J. S., Clark, A. S., Geddes, J. W., and Monaghan, D. T., 1989, The role of the NMDA receptor in central nervous system plasticity and pathology, J.NIH Res. 1: 65.Google Scholar
  18. Cummins, J. T., Sack, M., von-Hungen, K., 1990, The effect of chronic ethanol on glutamate binding in human and rat brain, Life Sci. 47 (10): 877.PubMedCrossRefGoogle Scholar
  19. Davda, R. K., Chandler, L. J., Crews, F. T., and Guzman, N. J., 1992, Ethanol enhances the endothelial nitric oxide synthase response to agonists, Hypertension, (In press)Google Scholar
  20. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H., 1991, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl. Acad. Sci. USA. 88: 6368.PubMedCrossRefGoogle Scholar
  21. Dildy, J. E., and Leslie, S. W., 1989, Ethanol inhibits NMDA-induced increases in free intracellular Ca2+ in dissociated brain cells, Brain Res. 499: 383.PubMedCrossRefGoogle Scholar
  22. Dodd, P.R., Thomas, G. J., Harper, C. G., and Kril, J. J., 1992, Amino acid neurotransmitter receptor changes in cerebral cortex in alcoholism: effect of cirrhosis of the liver, J. Neurochem. 59: 1506.PubMedCrossRefGoogle Scholar
  23. Favaron, M., Manev, H., Siman, R., Bertolino, M., Szekely, A. M., and DeErausquin, G., 1990, Down-regulation of protein kinase C protects cerebellar granule neurons in primary culture from glutamate-induced neuronal death, Proc. Natl. Acad. Sci. U.S.A.. 87: 1983.PubMedCrossRefGoogle Scholar
  24. Freund, G., 1985, Neuropathology of alcohol abuse, in: “Alcohol and the Brain Chronic Effects”, R.E. Tarter, P.D. and D.H.V. Thiel, M.D. ed., Plenum Publishing Company, New York, N.Y.Google Scholar
  25. Garthwaite, J., Garthwaite, G., Palmer, R. M. J., and Moneada, S., 1989, NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices, Eur. J. Pharmacol. 172: 413.PubMedCrossRefGoogle Scholar
  26. Gilbertson, T. A., Scobey, R., and Wilson, M., 1990, Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells, Science. 251: 1613.CrossRefGoogle Scholar
  27. Gonzales, R. A., and Hoffman, P. L., 1991, Receptor-gated ion channels may be selective CNS targets for ethanol, TIPS. 12: 1.PubMedGoogle Scholar
  28. Gorelick, P. M., 1990, Stroke from alcohol and drug abuse, Postgrad. Med. 88: 171.PubMedGoogle Scholar
  29. Grant, K. A., Valverius, P., Hudspith, M., and Tabakoff, B., 1990, Ethanol withdrawal seizures and the NMDA receptor complex, Eur. J. Pharmacol. 176: 289.PubMedCrossRefGoogle Scholar
  30. Greenberg, D. A., Sampson, H. A., and Chan, J., 1992, Ethanol protection from excitotoxic neural injury in vitro, in: “Excitatory Amino Acids”, Simon R.P., ed., Thieme Medical Publishers, Inc., Stuttgart, N.Y.Google Scholar
  31. Gulya, K., Grant, K.A., Valverius, P., Hoffman, P. L., and Tabakoff, B., 1991, Brain regional specificity and time-course of changes in the NMDA receptor-ionophore complex during ethanol withdrawal, Brain Res. 547: 129.PubMedCrossRefGoogle Scholar
  32. Harper, C. B., and Kril, J. J., 1990, Neuropathology of alcoholism, Alcohol. 25: 207.Google Scholar
  33. Harper, C. G., Kril, J. J., and Daly, J., 1987, Are we drinking our neurons away? Br. Med. J. 294: 534.CrossRefGoogle Scholar
  34. Harper, C. G., Kril, J. J., and Holloway, R. L., 1985, Brain shrinkage in chronic alcoholics, Br. Med. J. 290: 501.CrossRefGoogle Scholar
  35. Harris, R. A., and Allan, A. M., 1989, Alcohol intoxication: ion channels and genetics, FASEB J. 3: 1689.PubMedGoogle Scholar
  36. Hillbom, 1978, Does ethanol intoxication promote brain infarction in young adults? Lancet. 2: 1181.Google Scholar
  37. Hoffman, P. L., Moses, F., and Tabakoff, B., 1989(a), Selective inhibition by ethanol of glutamate-stimulated cyclic GMP production in primary cultures of cerebellar granule cells, Neuropharmacology. 28: 1239.Google Scholar
  38. Hoffman, P. L., Rabe, C. S., Moses, F., and Tabakoff, B., 1989(b), N-Methyl-D-Aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production, J. Neurochem. 52: 1937.Google Scholar
  39. Hoffman, P.L., and Tabakoff, B., 1990, Ethanol and guanine nucleotide binding proteins: A selective interaction, FASEB J. 4: 2612.PubMedGoogle Scholar
  40. lorio, K. R., Reinlib, L., Tabakoff, B., and Hoffman, P. L., 1992, Chronic exposure of cerebellar granule cells to ethanol results in increased N-methyl-D-aspartate receptor function, Mol. Pharmacol. 41: 1142.Google Scholar
  41. Jernigan, T. L., Butter, N., and Cermak, L. S., 1992, Studies of brain structure in chronic alcoholism using magnetic resonance imaging, in: “Imaging in Alcohol Research”-NIAAA Research Monograph-21, S. Zakhari and E. Witt, ed., U.S. Dept. of Health and Human Services, Rockville, M.D.Google Scholar
  42. Koh, J., and Choi, D. W., 1988, Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-Diaphorase, J. Neurosci. 8: 2153.PubMedGoogle Scholar
  43. Leslie, S. W., Barr, E., Chandler, L. J., and Farrar, R. P., 1983, J. Pharmacol. Exp. Ther. 225: 571.PubMedGoogle Scholar
  44. Little, H. J., Dolin, S. J., and Halsey, M. J., 1986, Calcium channel antagonists decrease the ethanol withdrawal syndrome, Life Sci. 39: 2059.PubMedCrossRefGoogle Scholar
  45. Lovinger, D.M., 1991, Ethanol potentiation of 5-HT3, receptor-mediated ion currents in NCB-20 neuroblastoma cells, Neurosci. Lett. 122: 57.PubMedCrossRefGoogle Scholar
  46. Lovinger, D.M., 1991, Ethanol potentiation of 5-HT3, receptor-mediated ion currents in NCB-20 neuroblastoma cells, Neurosci. Lett. 122: 57.PubMedCrossRefGoogle Scholar
  47. Lovinger, D. M., White, G., and Weight, F. F., 1989, Ethanol inhibits NMDA-activated ion current in hippocampal neurons, Science. 243: 1721.PubMedCrossRefGoogle Scholar
  48. Lovinger, D. M., White, G., and Weight, F. F., 1990, NMDA receptor-mediated synaptic excitation selectively inhibited by ethanol in hippocampal slice from adult rat, J. Neurosci. 10: 1372.PubMedGoogle Scholar
  49. Lynch, M. J., 1960, Brain lesions in chronic alcoholism, AMA Arch. Path. 69: 342.PubMedGoogle Scholar
  50. Manev, H., Favaron, M., Guidotti, A., and Costa, E., 1989, Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death, Mol. Pharmacol. 36: 106.PubMedGoogle Scholar
  51. Mattson, M. P., Guthrie, P. B., and Kater, S. B., 1989, A role for Na+-dependent CA2+ extrusion in protection against neuronal excitotoxicity, The FASEB Journal. 3: 2519.Google Scholar
  52. Meldrum, B., and Garthwaite, J., 1990, Excitatory amino acid neurotoxicity and neurodegenerative disease, Trends Pharmacol. Sci. 11: 379.PubMedCrossRefGoogle Scholar
  53. Messing, R. O., Carpenter, C. L., Diamond, I., and Greenberg, D. A., 1986, Ethanol regulates calcium channels in clonal neural cells, Proc. Natl. Acad. Sci. USA. 83: 6213.PubMedCrossRefGoogle Scholar
  54. Michaelis,, E. K., Freed, W. J., Galton, N., Foye, J., Michaelis, M. L., Phillips, I., and Kleinman J. E., 1990, Glutamate receptor changes in brain synaptic membranes from human alcoholics, Neurochem. Res. 15: 1055.CrossRefGoogle Scholar
  55. Michaelis, E. K., Kumar, K. N., Tilakaratne, N., Johnson, P. S., Allen, A. E., Aistrup, G., and Schowen, R., 1992, Purification and reconstitution of an NMDA receptor-ion channel complex, and cloning of a cDNA for the glutamate binding subunit, in: “Excitatory Amino Acids”, R. P. Simon, ed., Thieme Medical Publishers, Inc., Stuttgart, N.Y., pp:23–27.Google Scholar
  56. Michaelis, E. K., Mulvaney, M. J., and Freed, W. J., 1978, Effects of acute and chronic ethanol intake on synaptosomal glutamate binding activity, Biochem. Pharmacol. 27: 1685.PubMedCrossRefGoogle Scholar
  57. Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C., and Cotman, C. W., 1988, Two classes of NMDA recognition sites: differential distribution and differential regulation by glycine, Proc. Natl. Acad. Sci. U.SA. 85: 9836.CrossRefGoogle Scholar
  58. Monyer, H., Sommer, B., Wisden, W., Verdoorn, T. A., Burnashev, N., Sprengel, R., Sakmann, B., and Seeburg, P. H., 1992(a), Glutamate-gated ion channels in the brain: genetic mechanisms for generating molecular and functional diversity, in: “Excitatory Amino Acids”, R. P. Simon, ed., Thieme Medical Publishers, Inc., Stuttgart, N.Y., pp:29–33.Google Scholar
  59. Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B. and Seeburg, P. H., 1992(b), Heteromeric NMDA receptors: molecular and functional distinction of subtypes, Science. 256: 1217.Google Scholar
  60. Monyer, H., and Choi, D. W., 1990, Glucose deprivation neuronal injury in vitro is modified by withdrawal of extracellular glutamine, J. Cereb. Blood Flow Metab. 10: 337.PubMedCrossRefGoogle Scholar
  61. Murphy, S. N., and Miller, R. J., 1989, Regulation of Ca2+ influx into striatal neurons by kainicacid, J. Pharmacol. Exp. Ther. 249: 184.PubMedGoogle Scholar
  62. Nagy, L.E., Diamond, I., Casso, D. J., et al., 1990, Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nuceloside transporter, J. Biol. Chem. 265: 1946.PubMedGoogle Scholar
  63. Nakanishi, S., 1992, Molecular characterization of the family of metabotropic glutamate receptors, in: “Excitatory Amino Acids”, R. P. Simon, ed., Thieme Medical Publishers, Inc., Stuttgart, N.Y.. pp:21–22.Google Scholar
  64. Nowicki, J. P., Duval, D., Poignet, H., and Scatton, B., 1991, Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse, Eur. J. Pharmacol. 204: 339.PubMedCrossRefGoogle Scholar
  65. O’Dell, T. J., Hawkins, R. D., Kandel, E. R., and Arancio, O., 1992, Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger, Proc. Natl. Acad. Sci. USA. 88: 11285.CrossRefGoogle Scholar
  66. Oakes, G., and Pozos, R. S., 1982, Electrophysiologic effects of acute ethanol exposure. I. Alterations in the action potentials of dorsal root ganglia neurons in dissociated culture. Dev. Brain Res. 5: 243.CrossRefGoogle Scholar
  67. Olney, J. W., 1990, Excitotoxin-mediated neuron death in youth and old age, Prog. Brain Res. 86: 37.PubMedCrossRefGoogle Scholar
  68. Orrenius, S., McConkey, D. J., Bellomo, G., and Nicotera, P., 1989, Role of Ca2+ in toxic cell killing, Trends Pharmacol. Sci. 10: 281.PubMedCrossRefGoogle Scholar
  69. Oscar-Berman, M, and Ellis, R. J., 1987, Cognitive deficits related to memory impairments in alcoholism, in: “Recent Developments in Alcoholism”, M. Galanter, ed., Plenum, New York, N.Y.Google Scholar
  70. Pfefferbaum, A., Lim, K. O., and Rosenbloom, M. A., 1992, Structural imaging of the brain in chronic alcoholism, in: “Imaging in Alcohol Research”-NLAAA Research Monograph-21, S. Zakhari and E. Witt, ed., U.S. Dept. of Health and Human Services, Rockville, M.D.Google Scholar
  71. Pfefferbaum, A., Lim, K. O., Ha, C. N. and Zipursky, R. B., 1990, Changes in brain white and gray matter volume in alcoholics: an MRI study. Alcohol. Clin. Exp. Res. 14: 328.Google Scholar
  72. Pfefferbaum, A., Rosenbloom, M. J., Crusan, K., and Jernigan, T. L., 1988, Brain CT changes in alcoholic. The effects of age and alcohol consumption, Alcohol. Clin. Exp. Res. 12: 81.PubMedCrossRefGoogle Scholar
  73. Schuman, K. and Madison, D. V., 1991, A requirement for the intercellular messenger nitric oxide in long-term potentiation, Science. 254: 1503.PubMedCrossRefGoogle Scholar
  74. Skattebol, A., and Rabin, R. A., 1987, Effects of ethanol on 45Ca2+ uptake in synaptosomes and in PC12 cells, Biochem. Pharmacol. 36: 2227.PubMedCrossRefGoogle Scholar
  75. Tecoma, E. S., and Choi, D. W., 1989, GABAergic neocortical neurons are resistant to NMDA receptor-mediated injury, Neurology. 39: 676.PubMedCrossRefGoogle Scholar
  76. Triestman, S. N., Comacho-Nasi, P., and Wilson A., 1985, Alcohol effects on voltage-dependent currents in identified cells, Alcoholism Clin. Exp. Res. 9: 201.Google Scholar
  77. Walker, D. W., and Hunter B. E., 1987, Neuronal adaptation in the hippocampus induced by long-term ethanol exposure, in: “The Role of Neuroplasticity in the Response to Drugs.”, D.P. Friedman and D.H. Clouet, ed., U.S. Government Printing Office, Washington, D.C.Google Scholar
  78. Walker, D. W., Hunter, B. E., and Abraham W. C., 1981, Neuroanatomical and functional deficits subsequent to chronic ethanol administration in animals, Alcoholism Clin. Exp. Res. 5: 267.CrossRefGoogle Scholar
  79. Weiss, J. H., Hartley, D. M., Koh, J., and Choi, D. W., 1990, The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity, Science. 247: 1474.PubMedCrossRefGoogle Scholar
  80. Westenbroek, R. E., Ahlijanian, M. K., and Catterall, W. A., 1990, Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons, Nature. 347: 281.PubMedCrossRefGoogle Scholar
  81. Woodward, J. J., and Gonzales, R. A., 1990, Ethanol inhibition of N-Methyl-D-Aspartate-stimulated endogenous dopamine release from rat striatal slices: reversal by glycine, J. Neurochem. 54: 712.PubMedCrossRefGoogle Scholar
  82. Zielasek, J., Tausch, M., Toyka, K. V., and Hartung H. P., 1992, Production of nitrite by neonatal rat microglial cells/brain macrophages, Cell. Immun. 141: 111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Fulton T. Crews
    • 1
  • Hunter Newsom
    • 1
  • Mark Gerber
    • 1
  • Colin Sumners
    • 1
  • L. Judson Chandler
    • 1
  • Gerhard Freund
    • 1
  1. 1.Center for Alcohol Research Department of PharmacologyUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations