Advertisement

Molecular Mechanisms of Ethanol and Anesthetic Actions: Lipid- and Protein-Based Theories

  • Christopher D. Stubbs
  • Emanuel Rubin

Abstract

The use of ethanol goes back to the dawn of civilization, but in spite of intense efforts its mode of action at the molecular level has remained elusive. Ethanol is classed as a weak anesthetic. Apart from its metabolic fate, it is generally believed that the mechanisms of ethanol intoxication and general anesthesia share important features (in this review the term anesthetic therefore includes ethanol). The precise location of molecular action has continued to be a subject of controversy to the present day. The current consensus is that anesthetics have a site(s) of action, located within the cell membrane, presumably at the synapse. However, debate has continued as to whether the site is located exclusively in the lipid bilayer, at a hydrophobic site on a protein or at the membrane protein-lipid interface.

Keywords

Lipid Bilayer Membrane Fluidity Anesthetic Action Hydrophobic Site Ethanol Intoxication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alifimoff, J. K., Firestone, L. L., and Miller, K. W. 1989, Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br. J. Pharmacol. 96: 9–16.PubMedCrossRefGoogle Scholar
  2. Almeida, L. M., Vaz, W. L. C. Stumpel, J., and Madiera, V. M. C. 1986, Effect of short-chain primary alcohols on fluidity and activity of sarcoplasmic reticulum membranes. Biochemistry 25: 4832–4839.PubMedCrossRefGoogle Scholar
  3. Bell, R. M., and Burns, D. J. 1991, Lipid activation of protein kinase C. J. Biol. Chem. 266: 4661–4664.PubMedGoogle Scholar
  4. Bernard, C. 1875 Lecons sur les anesthesiques et sur l’asphyxie. 37a: pp 363.Google Scholar
  5. Boggs, J. M. 1987, Lipid interactions and molecular hydrogen bonding. Biochim. Biophys. Acta 906: 353–404.PubMedCrossRefGoogle Scholar
  6. Cevc, G. 1987, How membrane chain melting properties are regulated by the polar surface of the lipid bilayer. Biochemistry 26: 6305–6310.PubMedCrossRefGoogle Scholar
  7. Covarrubias, M. 1993, Ethanol selectively bblocks a non-activating K+ current encoded by Drosophila Shaw2. Biophys. J. 64: A227.Google Scholar
  8. Crowe, J. H., and Crowe, L. M. 1984, Effects of dehydration on membranes. Biological Membranes 5: 58–103.Google Scholar
  9. Curatola, G., Lenaz, G., and Zolese, G. 1991 Anesthetic-membrane interactions, in: “Membrane Fluidity” (vol 5) R. C. Aloia, C. C. Curtain, and L. M. Gordon, eds., Wiley, NY., pp 35–70.Google Scholar
  10. Curatola, G., Mazzanti, L., Bertoli, E., and Lenaz, G. 1978, The action of general anesthetics on lipid-protein interactions. Bull. Mol. Biol. Med. 3: 123–135.Google Scholar
  11. Dluzewski, A. R., Halsey, M. J., and Simmonds, A. C. 1983, Membrane interactions with general and local anesthetics: a review of molecular hypotheses of anesthesia. Molec. Aspects Med. 6: 459–573.CrossRefGoogle Scholar
  12. Ellingson, J. S., Janes, N., Taraschi, T. F., and Rubin, E. 1991, The effect of chronic ethanol consumption of the fatty acid composition of phosphatidylinositol in rat liver microsomes as determined by gas chromatography and 1H-NMR. Biochim. Biophys. Acta 1062: 199–205.PubMedCrossRefGoogle Scholar
  13. Ellingson, J. S., Taraschi, T. F., Wu, A., Zimmerman, R., and Rubin, E. 1988, Cardiolipin from ethanol-fed rats confers tolerance to ethanol in liver mitochondrial membranes. Proc. Natl. Acad. Science (USA) 85: 3353–3357.CrossRefGoogle Scholar
  14. Franks, N. P., and Lieb, W. R. 1982, Moleculr mechanism of general anesthesia. Nature 300: 487–493.PubMedCrossRefGoogle Scholar
  15. Franks, N. P., and Lieb, W. R. 1984, Do general anesthetics act by competetive binding to specific receptors? Nature 310: 599–601.PubMedCrossRefGoogle Scholar
  16. Franks, N. P., and Lieb, W. R. 1985, Mapping of general anesthetic target sites provides a molecular basis for cut-off effects. Nature 316: 349–351.PubMedCrossRefGoogle Scholar
  17. Fraser, D. M., Louro, S. R. W., Horvath, L. I., Miller, K. W., and Watts, A. 1990, A study of the effec of general anesthetics on protein-lipid interactions in acetylcholine receptor enriched membranes. Biochemistry 29: 2664–2669.PubMedCrossRefGoogle Scholar
  18. Goldstein, D. B. 1984, Effect of drugs on membrane fluidity. Ann. Rev. Pharm. Toxicol. 24: 43–64.PubMedCrossRefGoogle Scholar
  19. Grog, P., and Belagyi, J. 1983, The effect of anesthetics on protein conformation in membranes as studied by the spin-labelling technique. Biochim. Biophys. Acta 734: 3198–328.Google Scholar
  20. Halsey, M. J., and Smith, E. B. 1970, Effects of anesthetics on luminous bacteria. Nature 227: 1363–1365.PubMedCrossRefGoogle Scholar
  21. Harris, R. A. and Schroeder, F. 1981, Ethanol and the physical properties of brain membranes. Mol. Pharm. 20: 128–137.Google Scholar
  22. Ho, C., and Stubbs, C. D. 1992, Hydration at the hydrophobic membrane protein-lipid interface. Biophys. J. 63: 897–902.PubMedCrossRefGoogle Scholar
  23. Ho, C., Kelly, M. B., and Stubbs, C. D. 1993, Fluorescence lifetime heterogeneity as a probe of the membrane protein-lipid interface: Effects of increased phospholipid unsaturation and perturbation by ethanol. Biophy. J. (submitted).Google Scholar
  24. Ho, C., Williams, B. W., and Stubbs, C. D. 1992, Analysis of cell membrane micro-heterogeneity using the fluorescence lifetime of DPH-type fluorophores. Biochim. Biophys. Acta 1104: 273–282.PubMedCrossRefGoogle Scholar
  25. Hoek, J, B., and Taraschi, T. F. 1988, Cellular adaptation to ethanol. Trends in Biochemical Sciences 13: 269–274.PubMedCrossRefGoogle Scholar
  26. Janes, N., Hsu, J. W., Rubin, E., and Taraschi, T. F. 1992, Nature of alcohol and anesthetic action on cooperative membrane equilibria. Biochemistry 31: 9467–9472.PubMedCrossRefGoogle Scholar
  27. Kaminoh, Y., Nishimura, S., and Ueda, I. 1992, Alcohol interaction with high entropy states of macromolecules: critical temperature hypothesis for anesthesia cut-off. Biochim. Biophys. Acta 1106: 335–343.PubMedCrossRefGoogle Scholar
  28. Klemm, W. R., and Yurttas, L. 1992 The dehydration theory of alcohol intoxication, in: “Treatment of Drug and Alcohol Abuse,” R. R. Watson, ed., Humana Press, Clifton, NJ. pp 1–15.Google Scholar
  29. LoGrasso, P. V., F. Moll, and T. A. Cross. (1988,) Solvent history dependence of gramicidin a conformations in hydrated lipid bilayers. Biophysical J. 54: 259–267.Google Scholar
  30. LoGrasso, P. V., F. Moll, and T. A. Cross. 1988, Solvent history dependence of gramicidin a conformations in hydrated lipid bilayers. Biophysical J. 54: 259–267.CrossRefGoogle Scholar
  31. Lopes, C. M. B., and Louro, S. R. W. 1991, The effects of n-alkanols on the lipid/protein interface of Ca2+-ATPase of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 1070: 467–473.PubMedCrossRefGoogle Scholar
  32. Marques, A., and Guerri, C. 1988, Effects of ethanol on rat brain Na+, K+-ATPase from native and delipidized synaptic membranes. Biochem. Pharm. 37: 601–606.PubMedCrossRefGoogle Scholar
  33. Meyer, H. 1889, Eigenschaft der anathetica bedingt ihre narkitische Wirkung? Arch Exp. Path. Pharmak. (Naunyn-Schmiedebergs) 42: 109–118.CrossRefGoogle Scholar
  34. Meyer, H. 1901, Der einfluss wechselnder temperatur auf wirkungsstarke und theilungscoefficient der narcotica. Arch Exp. Membr. Path. Pharmak. (Naunyn-Schmiedebergs) 46: 338–346.CrossRefGoogle Scholar
  35. Miller, K. W. 1985, Nature of the site of general anesthesia. Int. Rev. Neurobiol. 27: 1–61.PubMedCrossRefGoogle Scholar
  36. Miller, S. L. 1961, A theory of gaseous anesthetics. Proc. Natl. Acad. Sci. 47: 1515–1524.PubMedCrossRefGoogle Scholar
  37. Morgan, P. G., Sedensky, M. M., and Meneely, P. M. 1991, The genetics of response to volatile anesthetics in C. Elegans. Ann. NY Acad. Sci. 625: 524–531.CrossRefGoogle Scholar
  38. Nash, H. A., Campbell, D. B., and Krishnan, K. S. 1991, New Mutants of Drosophila that are resistant to the anesthetic effects of halothane. Ann. NY Acad. Sci. 625: 540–544.PubMedCrossRefGoogle Scholar
  39. Nie, Y., Stubbs, C. D., Williams, B. W., and Rubin, E. 1989, Ethanol causes decreased partitioning into biological membranes without changes in lipid order. Archives Biochem. Biophys. 268: 349–359.CrossRefGoogle Scholar
  40. Nishizuka, Y. 1988, Protein kinase C. Nature 334: 661–665.PubMedCrossRefGoogle Scholar
  41. Overton, E. Studien uber die Narkose (Fischer, Jena, 1901 ).Google Scholar
  42. Pauling, L. 1961, A molecular theory of general anesthesia. Science 134: 15–21.PubMedCrossRefGoogle Scholar
  43. Rand, R. P., and Parsegian, V. A. 1989, Hydration forces between phospholipid bilayers. Biochim. Biophys. Acta 988: 351–375.CrossRefGoogle Scholar
  44. Richards, C. D., Martin, K., Gregory, S., Keightley, C. A., Hesketh, T. R., Smith, G. Warren, G. B., and Metcalfe, J. C. 1978, Degenerate perturbations of protein structure as the mechanism of anesthetic action. Nature 276: 775–119.PubMedCrossRefGoogle Scholar
  45. Rottenberg, H., Waring, A., and Rubin, E. 1981, Tolerance and cross tolerance in chronic alcoholics: reduced membrane binding of ethanol and other drugs. Science 213: 583–585.PubMedCrossRefGoogle Scholar
  46. Rubin, E., Miller, K. W., and Roth, S. H. (eds) Molecular and Cellular Mechanisms of Alcohol and Anesthetics. Ann. NY Acad. Sci. vol 625, (1991).Google Scholar
  47. Seeman, P. 1972, The membrane actions of anesthetics and tranquilizers. Pharamocol. Reviews 24: 583–655.Google Scholar
  48. Seeman, P. 1972, The membrane actions of anesthetics and tranquilizers. Pharamocol. Reviews 24: 583–655.Google Scholar
  49. Seeman, P. 1972, The membrane actions of anesthetics and tranquilizers. Pharamocol. Reviews 24: 583–655.Google Scholar
  50. Stubbs, C. D. 1989, Physico-chemical responses of cell membranes to dietary manipulation. Colloque Inserm 195: 125–134.Google Scholar
  51. Stubbs, C. D. 1983, Membrane fluidity. Structure and dynamics in membrane lipids. Essays in Biochemistry 19: 1–39.PubMedGoogle Scholar
  52. Stubbs, C. D., and Williams, B. W. (1992) Fluorescence in membranes, in: “Fluorescence Spectroscopy in Biochemistry” (vol III ), J. R. Lakowicz, ed., Plenum NY, pp 231–263.Google Scholar
  53. Stubbs, C. D., Kisielewski, A., and Rubin, E. 1991, Chronic ethanol ingestion modifies liver microsomal phosphatidylserine inducing resistance to hydrolysis by exogeneous phospholipase A2. Biochim. Biophys. Acta 1070: 349–354.PubMedCrossRefGoogle Scholar
  54. Stubbs, C. D., Williams, B. W., and Ho, C 1990, Fluorophore lifetime distributions as a probe of lipid bilayer organization. Time-Resolved Laser Spectroscopy in Biochemistry II. ( Lakowicz, J. R. ed.) Proc. SPIE 1204: 448–455.Google Scholar
  55. Stubbs, C. D., Williams, B. W., Pryor, C. L., and Rubin, E. 1988, Ethanol induced modifications to membrane lipid structure: Effect on phospholipase A2 - membrane interactions. Archives Biochem. Biophys. 262: 560–573.CrossRefGoogle Scholar
  56. Sun, G. Y., and Sun. A. Y. 1985, Ethanol and membrane lipids. Alcohol Clin. Exp. Res. 9: 164–180.PubMedCrossRefGoogle Scholar
  57. Swann, A. C. 1984, Chronic ethanol and Na-K ATP’ase. J. Pharm. Exp. Ther. 232: 475–479.Google Scholar
  58. Taraschi, T. F., and Rubin, E. 1985, Effect of ethanol on the chemical and stuctural properties of membranes. Lab. Invest. 52: 120–131.PubMedGoogle Scholar
  59. Taraschi, T. F., Ellingson, J. S., Wu, A., Zimmerman, R., and Rubin, E. 1986,. Phosphatidylinositol from ethanol-fed rats confers membrane tolerance to ethanol. Proc. Natl. Acad. Science (USA) 83: 9398–9402.Google Scholar
  60. Tas, P. W. L., Kress, H. G., and Koschel, K. 1987, General anesthetics can competitively interfere with sensitive membrane proteins. Proc. Natl. Acad. Sci. USA 84: 5972–5975.PubMedCrossRefGoogle Scholar
  61. Tas, P. W. L., Kress, H. G., and Koschel, K. 1990, Lipid solubility is not the sole criterion for the inhibition of a Ca2+ activated K+ channel by alcohols. Biochim. Biophys. Acta 1023: 436–440.PubMedCrossRefGoogle Scholar
  62. Ueda, I. (1991) Interfacial effects of anesthetics on membrane fluidity, in: “Membrane Fluidity” (vol 5) R. C. Aloia, C. C. Curtain, and L. M. Gordon, eds., Wiley, NY., pp 91–131.Google Scholar
  63. Ueda, I., and Kameya, H. 1973, Kinetic and thermodynamic aspects of the mechanism of general anesthesia in a model system of firefly luminescence in vitro. Anesthesiology 38: 425–436.PubMedCrossRefGoogle Scholar
  64. Urry, D. W., and Sandorfy, C. (1991) Chemical Modification of transmembrane protein structure and function, in: “Membrane Fluidity” (vol 5) R. C. Aloia, C. C. Curtain, and L. M. Gordon, eds., Wiley, NY., pp 91–131.Google Scholar
  65. Wang, D., Taraschi, T. F., Rubin, E., and Janes, N. 1993, Configurational entropy is the driving force of ethanol action in membrane architecture. Biochim. Biophys. Acta 1145: 141–148.PubMedCrossRefGoogle Scholar
  66. Williams, B. W., and Stubbs, C. D. 1988, Properties influencing fluorescence lifetime distributions in membranes. Biochemistry 27: 7994–7999.PubMedCrossRefGoogle Scholar
  67. Williams, B. W., Scotto, A. W., and Stubbs, C. D. 1990, The effect of proteins on fluorophore lifetime heterogeneity in lipid bilayers. Biochemistry 29: 3248–3255.PubMedCrossRefGoogle Scholar
  68. Wood, S. C., Forman, S. A., and Miller, K. W. 1991, Short chain and long chain alkanols have different sites of action on nicotinic acetylcholine receptor channels from Torpedo. Mol. Pharmacol. 39: 332–338.PubMedGoogle Scholar
  69. Wood, W. G., and Schroeder, F. 1988, Membrane Effects of ethanol: Bulk lipid versus lipid domains. Life Science 43: 467–475.CrossRefGoogle Scholar
  70. Zannoni, C., Arcioni, A., and Cavatorta, P. 1983, Fluorescence depolarization in liquid crystals and membrane bilayers. Chem. Phys. Lipids 32: 179–250.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Christopher D. Stubbs
    • 1
  • Emanuel Rubin
    • 1
  1. 1.Department of Pathology and Cell BiologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations