The Effect of Vinca Alkaloids on Tumour Blood Flow

  • S. A. Hill
  • S. J. Lonergan
  • J. Denekamp
  • D. J. Chaplin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 345)


Vascular insufficiency, induced by damage to the tumour vasculature, or closure of individual blood vessels, can lead to a dramatic increase in tumour hypoxia. This may be exploited therapeutically by combination therapy with bioreductive agents. Alternatively, if vascular function remains chronically impaired, the lack of oxygen becomes critical, resulting in ischaemic cell death. Since all of the cells supplied by an individual vessel will be affected by its closure, the potential for extensive tumour destruction exists.


Vinca Alkaloid Tumour Perfusion Blood Flow Change Relative Blood Flow Geometric Mean Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Algire, G.H., Legallais, F.Y. & Anderson, B.F. (1954). Vascular reactions of normal and malignant tissues in vivo. VI. The role of hypotension in the action of components of Podophyllin on transplanted sarcomas. JN.CJ., 14 879–893.Google Scholar
  2. Asher, A., Mulé, J.J., Reichert, C.M., Shiloni, E. & Rosenberg, S.A. (1987). Studies on the anti-tumour efficacy of systemically administered recombinant tumour necrosis factor against several murine tumours in vivo. J. Immunol., 138, 963–974.Google Scholar
  3. Baguley, B.C., Holdaway, K.M., Thomsen, L.L., Zhuang, L. & Zwi, L.J. (1991). Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: Evidence for a vascular mechanism. Eur. J. Cancer, 27, 482–487.PubMedCrossRefGoogle Scholar
  4. Bibby, M.C., Double, J.A., Loadman, P.M. & Duke, C.V. (1989). Reduction of tumor blood flow by flavone acetic acid: a possible component of therapy. JNCI, 81, 216220.CrossRefGoogle Scholar
  5. Constantinidis, I., Braunschweiger, P.G., Wehrle, J.P., Kumar, N., Johnson, C.S., Furmanski, P. & Glickson, J.D. (1989). 31P-NMR studies of the effect of recombinant human interleukin-la on the bioenergetics of RIF-1 tumors. Cancer Res., 49, 6379–6382.PubMedGoogle Scholar
  6. Denekamp, J. (1989). Induced vascular collapse in tumours: a way of increasing the therapeutic gain in cancer therapy. In: `The Scientific Basis of Modern Radiotherapy’. Ed. N.J. McNally,BIR Report, 19, 63–70.Google Scholar
  7. Denekamp, J., Hill, S.A. & Hobson, B. (1983). Vascular occlusion and tumour-cell death. Eur. J. Cancer & Clin. Oncol., 19, 271–275.CrossRefGoogle Scholar
  8. Evelhoch, J.L., Bissery, M-C, Chabot, G.C., Simpson, N.E., McCoy, C.L., Heilbrun, L.K. & Corbett, T.H. (1988). Flavone acetic acid (NSC 347512)-induced modulation of murine tumor physiology monitored by in vivo nuclear magnetic resonance spectroscopy. Cancer Res., 48, 4749–4755.PubMedGoogle Scholar
  9. Hill, S.A. and Denekamp, J. (1982). Site dependent response of tumours to combined heat and radiation. Br. J. Radiol., 55, 905–912.PubMedCrossRefGoogle Scholar
  10. Hill, S.A., Williams, K.B. & Denekamp, J. (1989). Vascular collapse after flavone acetic acid: a possible mechanism of its antitumour action. Eur. J. Cancer, Clin. Oncol., 25, 1419–1424.Google Scholar
  11. Hill, S.A., Williams, K.B. & Denekamp, J. (1991). Studies with a panel of tumours having a variable sensitivity to FAA, to investigate the mechanism of action. Int. J. Radial. Biol., 60, 379–384.CrossRefGoogle Scholar
  12. Old, L.J. (1985). Tumour necrosis factor (TNF). Science, 230 630–633.PubMedCrossRefGoogle Scholar
  13. Sapirstein, L.A. (1958). Regional blood flow by fractional distribution of indicators. Am. J. Physiol., 193, 161–168.PubMedGoogle Scholar
  14. Smith, G.P., Calveley, S.B., Smith, M.J. & Baguley, B.C. (1987). Flavone acetic acid (NSC 347512) induces haemorrhagic necrosis of mouse colon 26 and 38 tumours. Eur. J. Cancer, Clin. Oncol., 23, 1209–1211.Google Scholar
  15. Song, C.W. (1984). Effect of local hyperthermia on blood flow and microenvironment. Cancer Res. (Suppl.), 44, 4721S–4730S.Google Scholar
  16. Star, W.M., Marlinissen, H.P.A., Vanden Berg-Blok, A.E., Versteeg, J.A.C., Franken, K.A.P. & Reinhold, H.S. (1986). Destruction of rat mammary tumour and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res., 46, 2532–2540.PubMedGoogle Scholar
  17. Stephens, T.C. & Peacock, J.H. (1978). Cell yield and cell survival following chemotherapy of the B16 melanoma. Br. J. Cancer, 38, 591–598.PubMedCrossRefGoogle Scholar
  18. Watanabe, N., Nirrsu, Y., Umeno, H., Kuriyana, H., Neda, H., Yamauchi, Y., Maeda, M. & Urushizaki, I. (1988). Toxic effect of tumour necrosis factor on tumour vasculature in mice. Cancer Res., 48, 2179–2183.PubMedGoogle Scholar
  19. Zwi, L.J., Baguley, B.C., Gavin, J.B. & Wilson, W.R. (1989). Blood flow failure as a major determinant in the antitumor action of flavone acetic acid (NSC 347512). JNCI, 81, 1005–1013.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • S. A. Hill
    • 1
  • S. J. Lonergan
    • 1
  • J. Denekamp
    • 1
  • D. J. Chaplin
    • 1
  1. 1.Vascular Targeting GroupCRC Gray LaboratoryNorthwood MiddlesexUK

Personalised recommendations