Advertisement

The Microvascular Unit Size for Fractal Flow Heterogeneity Relevant for Oxygen Transport

  • J. H. G. M. van Beek
  • J. P. F. Barends
  • N. Westerhof
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 345)

Abstract

Blood flow is heterogeneously distributed in the myocardium. The width of this distribution depends on the spatial resolution of the flow measurement. Flow heterogeneity has been described by a fractal relation: the relative dispersion (standard deviation/mean) of the measured flow distribution increases with the spatial resolution of the measurement via a power law (Bassingthwaighte et al., 1989). The dependence of the dispersion of the flow distribution on spatial resolution has also been explained with a fractal vascular network model (Van Beek et al., 1989). Both types of fractal model imply that the heterogeneous flow is not distributed randomly, but that flow shows spatial correlation over large distances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassingthwaighte, J.B., King, R.B., and Roger, S.A., 1989, Fractal nature of regional myocardial flow heterogeneity, Circ. Res. 65:578.PubMedCrossRefGoogle Scholar
  2. Bassingthwaighte, J.B., and Van Beek, J.H.G.M., 1988, Lightning and the heart: fractal behavior in cardiac function, Proc. IEEE 76:693.CrossRefGoogle Scholar
  3. Bassingthwaighte, J.B., Van Beek, J.H.G.M., and King, R.B., 1990, Fractal branchings: the basis of myocardial flow heterogeneities? Ann. N.Y. Acad. Sci. 591: 392.PubMedCrossRefGoogle Scholar
  4. Bassingthwaighte, J.B., Yipintsoi, T., and Harvey, R.B., 1974, Microvasculature of the dog left ventricular myocardium, Microvasc. Res. 7:229.PubMedCrossRefGoogle Scholar
  5. Burden, R.L., and Faires J.D., 1989, “Numerical Analysis (Fourth Edition),” PWS-KENT Publishing Company, Boston.Google Scholar
  6. Crank, J., 1975, “The Mathematics of Diffusion (Second Edition),” Clarendon Press, Oxford.Google Scholar
  7. Loiselle, D.S., 1989, Exchange of oxygen across the epicardial surface distorts estimates of myocardial oxygen consumption, J.Gen.Physiol. 86:105.Google Scholar
  8. Popel, A.S., and Gross, J.F., 1979, Analysis of oxygen diffusion from arteriolar networks, Am.J.Physiol. 237:H681.PubMedGoogle Scholar
  9. Tyml, K., and Ellis, C.G., 1989, Localized heterogeneity of red cell velocity in skeletal muscle at rest and after contraction, Adv.Exp.Med.Biol. 248:735.PubMedCrossRefGoogle Scholar
  10. Van Beek, J.H.G.M., 1992, Fractal models of heterogeneity in organ blood flow, in: “Modelling of oxygen transport from environment to cell,” S. Egginton and H. Ross, eds., Cambridge University Press, Cambridge.Google Scholar
  11. Van Beek, J.H.G.M., Loiselle, D.S., and Westerhof, N., 1992, Calculation of oxygen diffusion across the surface of isolated perfused hearts, Am.J.Physiol. 263 (Heart Circ. Physiol. 32), in press.Google Scholar
  12. Van Beek, J.H.G.M., Roger, S.A. and Bassingthwaighte, J.B., 1989, Regional myocardial flow heterogeneity explained with fractal networks, Am.J.Physiol. 257 (Heart Circ. Physiol. 26):H1670.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. H. G. M. van Beek
    • 1
  • J. P. F. Barends
    • 1
  • N. Westerhof
    • 1
  1. 1.The Laboratory for PhysiologyFree UniversityAmsterdamThe Netherlands

Personalised recommendations