Molecular Biology of Angiotensin II Receptors

  • Bernard Lassègue
  • Kathy K. Griendling
  • R. Wayne Alexander


Angiotensin II (ANG II), a central component of the renin—angiotensin— aldosterone system, helps to sustain blood pressure by affecting multiple targets.1,2 ANG II stimulates glomerulosa cells of the adrenal cortex to release aldosterone, which is responsible for reabsorption of sodium and water in the kidney, and increases heart rate and contractile force and constricts blood vessel smooth muscle cells, thus increasing blood pressure. In the kidney, ANG II contracts glomerular mesangial cells and smooth muscle in efferent arterioles, resulting in a decrease in filtration. It also stimulates epithelial cells of the proximal tubules and promotes reabsorption of sodium and water. In addition, ANG II increases pituitary secretion of vasopressin, a vasoconstrictor and antidiuretic hormone. In the brain, ANG II induces thirst and salt appetite. Finally, ANG II increases catecholamine release by stimulating central sympathetic activity and secretion by adrenal chromaffin cells.


Vascular Smooth Muscle Cell R3T3 Cell Adrenal Glomerulosa Cell Guanine Nucleotide Regulatory Protein Umbilical Vein Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bottari SP, de Gasparo M, Steckelings UM, et al: Angiotensin II receptor subtypes: Characterization, signaling mechanisms, and possible physiological implications. Frontiers Neuroendocrinal 2:123–171, 1993.Google Scholar
  2. 2.
    Peach MJ: Renin—angiotensin system: Biochemistry and mechanisms of action. Physiol Rev 57:313–370, 1977.PubMedGoogle Scholar
  3. 3.
    Dzau VJ, Gibbons GH, Pratt RE: Molecular mechanisms of vascular renin—angiotensin system in myointimal hyperplasia. Hypertension 18:II100–II105, 1991.PubMedGoogle Scholar
  4. 4.
    Schelling P, Fisher H, Ganten D: Angiotensin and cell growth: A link to cardiovascular hypertrophy? J Hypertens 9:3–15, 1991.PubMedGoogle Scholar
  5. 5.
    Krieger JE, Dzau VJ: Molecular biology of hypertension. Hypertension 18:I3–I17, 1991.PubMedGoogle Scholar
  6. 6.
    Campbell WB, Pettinger WA: Organ specificity of angiotensin II and Des-aspartyl angiotensin II in the conscious rat. J Pharmacol Exp Ther 198:450–456, 1976.PubMedGoogle Scholar
  7. 7.
    Caldicott WJH, Taub KJ, Margulies SS, et al: Angiotensin receptors in glomeruli differ from those in renal arterioles. Kidney Int 19:687–693, 1981.PubMedGoogle Scholar
  8. 8.
    Schiavone MT, Santos RAS, Brosnihan KB, et al: Release of vasopressin from the rat hypothalamoneurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci USA 85:4095–4098, 1988.PubMedGoogle Scholar
  9. 9.
    Campanile CP, Crane JK, Peach MJ, et al: The hepatic angiotensin II receptor. I. Characterization of the membrane-binding site and correlation with physiological response in hepatocytes. J Biol Chem 257:4951–4958, 1982.PubMedGoogle Scholar
  10. 10.
    Wright GB, Alexander RW, Ekstein LS, et al: Characterization of the rabbit ventricular myocardial receptor for angiotensin II. Evidence for two sites of different affinities and specificities. Mol Pharmacol 24:213–221, 1983.PubMedGoogle Scholar
  11. 11.
    Gunther S: Characterization of angiotensin II receptor subtypes in rat liver. J Biol Chem 259:7622–7629, 1984.PubMedGoogle Scholar
  12. 12.
    Bouscarel B, Blackmore PF, Exton JH: Characterization of the angiotensin II receptor in primary cultures of rat hepatocytes. Evidence that a single population is coupled to two different responses. J Biol Chem 263:14913–14919, 1988.PubMedGoogle Scholar
  13. 13.
    Douglas JG: Angiotensin II receptor subtypes of the kidney cortex. Am J Physiol 253:F1–F7, 1987.PubMedGoogle Scholar
  14. 14.
    Chang RS, Lotti VJ: Two distinct angiotensin II receptor binding sites in rat adrenal revealed by new selective nonpeptide ligands. Mol Pharmacol 37:347–351, 1990.PubMedGoogle Scholar
  15. 15.
    Chiu AT, Herblin WF, McCall DE, et al: Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203, 1989.PubMedGoogle Scholar
  16. 16.
    Whitebread S, Mele M, Kamber B, et al: Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284–291, 1989.PubMedGoogle Scholar
  17. 17.
    Speth RC, Kim KH: Discrimination of two angiotensin II receptor subtypes with a selective agonist analogue of angiotensin II, p-aminophenylalanine6 angiotensin II. Biochem Biophys Res Commun 169:997–1006, 1990.PubMedGoogle Scholar
  18. 18.
    Dudley DT, Panek RL, Major TC, et al: Subclasses of angiotensin II binding sites and their functional significance. Mol Pharmacol 38:370–377, 1990.PubMedGoogle Scholar
  19. 19.
    Viswanathan M, Tsutsumi K, Correa FM, et al: Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun 179:1361–1367, 1991.PubMedGoogle Scholar
  20. 20.
    Bottari SP, Taylor V, King IN, et al: Angiotensin II AT2 receptors do not interact with guanine nucleotide binding proteins. Eur J Pharmacol 207:157–163, 1991.PubMedGoogle Scholar
  21. 21.
    Dudley DT, Summerfelt RM: Regulated expression of angiotensin II (AT2) binding sites in R3T3 cells. Regul Pept 44:199–206, 1993.PubMedGoogle Scholar
  22. 22.
    Bumpus FM, Catt KJ, Chiu AT, et al: Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension 17:720–721, 1991.PubMedGoogle Scholar
  23. 23.
    Criscione L, Thomann H, Whitebread S, et al: Binding characteristics and vascular effects of various angiotensin II antagonists. J Cardiovasc Pharmacol 4:s56–s59, 1990.Google Scholar
  24. 24.
    Wong PC, Hart SD, Zaspel AM, et al: Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD 123177 (AII-2). J Pharmacol Exp Ther 255:584–592, 1990.PubMedGoogle Scholar
  25. 25.
    Kem DC, Johnson EI, Capponi AM, et al: Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am J Physiol 261:C77–C85, 1991.PubMedGoogle Scholar
  26. 26.
    Sachinidis A, Ko Y, Weisser P, et al: EXP3174, a metabolite of losartan (MK 954, DuP 753) is more potent than losartan in blocking the angiotensin II-induced responses in vascular smooth muscle cells. J Hypertens 11:155–162, 1993.PubMedGoogle Scholar
  27. 27.
    Bauer PH, Chiu AT, Garrison JC: DuP 753 can antagonize the effects of angiotensin II in rat liver. Mol Pharmacol 39:579–585, 1991.PubMedGoogle Scholar
  28. 28.
    Bernstein KE, Alexander RW: Counterpoint: Molecular analysis of the angiotensin II receptor. Endocrinol Rev 13:381–386, 1992.Google Scholar
  29. 29.
    Barbella Y, Cierco M, Israel A: Effect of losartan, a nonpeptide angiotensin II receptor antagonist, on drinking behavior and renal actions of centrally administered renin. Proc Soc Exp Biol Med 202:401–406, 1993.PubMedGoogle Scholar
  30. 30.
    Li Z, Bains JS, Ferguson AV: Functional evidence that the angiotensin antagonist losartan crosses the blood—brain barrier in the rat. Brain Res Bull 30:33–39, 1993.PubMedGoogle Scholar
  31. 31.
    Tsutsumi K, Saavedra JM: Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol 261:R209–R216, 1991.PubMedGoogle Scholar
  32. 32.
    Aldred GP, Chai SY, Song K, et al: Distribution of angiotensin II receptor subtypes in the rabbit brain. Regul Pept 44:119–130, 1993.PubMedGoogle Scholar
  33. 33.
    Barnes JM, Steward LJ, Barber PC, et al: Identification and characterization of angiotensin II receptor subtypes in human brain. Eur J Pharmacol 230:251–258, 1993.PubMedGoogle Scholar
  34. 34.
    Millan MA, Jacobowitz DM, Aguilera G, et al: Differential distribution of AT1 and AT2 angiotensin II receptor subtypes in the rat brain during development. Proc Natl Acad Sci USA 88:11440–11444, 1991.PubMedGoogle Scholar
  35. 35.
    Bunnemann B, Iwai N, Metzger R, et al: The distribution of angiotensin II AT1 receptor subtype mRNA in the rat brain. Neurosci Lett 142:155–158, 1992.PubMedGoogle Scholar
  36. 36.
    Barnes KL, McQueeney AJ, Ferrario CM: Receptor subtype that mediates the neuronal effects of angiotensin II in the rat dorsal medulla. Brain Res Bull 31:195–200, 1993.PubMedGoogle Scholar
  37. 37.
    Weber V, Monnot C, Bihoreau C, et al: The difficult challenge of cloning the angiotensin II receptor. Horm Res 34:101–104, 1990.PubMedGoogle Scholar
  38. 39.
    Elton TS, Dion LD, Bost KL, et al: Purification of an angiotensin II binding protein by using antibodies to a peptide encoded by angiotensin II complementary RNA. Proc Natl Acad Sci USA 85:2518–2522, 1988.PubMedGoogle Scholar
  39. 39.
    Guillemette G, Escher E: Analysis of the adrenal angiotensin II receptor with the photoaffinity labeling method. Biochemistry 22:5591–5596, 1983.PubMedGoogle Scholar
  40. 40.
    Kwok YG, Moore GJ: Comparison of angiotensin receptors in isolated smooth muscle tissues by photoaffinity labeling. Eur J Pharmacol 115:53–58, 1985.PubMedGoogle Scholar
  41. 41.
    Guillemette G, Guillon G, Marie J, et al: High yield photoaffinity labeling of angiotensin II receptors. Mol Pharmacol 30:544–551, 1986.PubMedGoogle Scholar
  42. 42.
    Carson MC, Harper CM, Baukal AJ, et al: Physicochemical characterization of photoaffinity-labeled angiotensin II receptors. Mol Endocrinol 1:147–153, 1987.PubMedGoogle Scholar
  43. 43.
    Rondeau JJ, McNicoll N, Escher E, et al: Hydrodynamic properties of the angiotensin II receptor from bovine adrenal zona glomerulosa. Biochem J 268:443–448, 1990.PubMedGoogle Scholar
  44. 44.
    Desarnaud F, Marie J, Lombard C, et al: Deglycosylation and fragmentation of purified rat liver angiotensin II receptor: Application to the mapping of hormone-binding domains. Biochem J 289:289–297, 1993.PubMedGoogle Scholar
  45. 45.
    Murphy TJ, Takeuchi K, Alexander RW: Molecular cloning of AT1 angiotensin receptors. Am J Hypertens 5:236s–242s, 1992.PubMedGoogle Scholar
  46. 46.
    Murphy TJ, Alexander RW, Griendling KK, et al: Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236, 1991.PubMedGoogle Scholar
  47. 47.
    Iwai N, Yamano Y, Chaki S, et al: Rat angiotensin II receptor: cDNA sequence and regulation of the gene expression. Biochem Biophys Res Commun 177:299–304, 1991.PubMedGoogle Scholar
  48. 48.
    Sasaki K, Yamano Y, Bardhan S, et al: Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351:230–233, 1991.PubMedGoogle Scholar
  49. 49.
    Bergsma DJ, Ellis C, Kumar C, et al: Cloning and characterization of a human angiotensin II type 1 receptor. Biochem Biophys Res Commun 183:989–995, 1992.PubMedGoogle Scholar
  50. 50.
    Furuta H, Guo DF, Inagami T: Molecular cloning and sequencing of the gene encoding human angiotensin II type 1 receptor. Biochem Biophys Res Commun 183:8–13, 1992.PubMedGoogle Scholar
  51. 51.
    Takayanagi R, Ohnaka K, Sakai Y, et al: Molecular cloning, sequence analysis and expression of a cDNA encoding human type-1 angiotensin II receptor. Biochem Biophys Res Commun 183:910–916, 1992.PubMedGoogle Scholar
  52. 52.
    Carsia RV, McIlroy PJ, Kowalski KI, et al: Isolation of turkey adrenocortical cell angiotensin II (AII) receptor partial cDNA: Evidence for a single-copy gene expressed predominantly in the adrenal gland. Biochem Biophys Res Commun 191:1073–1080, 1993.PubMedGoogle Scholar
  53. 53.
    Dohlman HG, Caron MG, Lefkowitz RJ: A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26:2657–2664, 1987.PubMedGoogle Scholar
  54. 54.
    Catt KJ, Carson MC, Hausdorff WP, et al: Angiotensin II receptors and mechanisms of action in adrenal glomerulosa cells. J Steroid Biochem 27:915–927, 1987.PubMedGoogle Scholar
  55. 55.
    Yamano Y, Ohyama K, Chaki S, et al: Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site-directed mutagenesis. Biochem Biophys Res Commun 187:1426–1431, 1992.PubMedGoogle Scholar
  56. 56.
    Ohyama K, Yamano Y, Chaki S, et al: Domains for G-protein coupling in angiotensin II receptor type I: Studies by site-directed mutagenesis. Biochem Biophys Res Commun 189:677–683, 1992.PubMedGoogle Scholar
  57. 57.
    Langford K, Frenzel K, Martin BM, et al: The genomic organization of the rat AT1 angiotensin receptor. Biochem Biophys Res Commun 183:1025–1032, 1992.PubMedGoogle Scholar
  58. 58.
    Elton TS, Stephan CC, Taylor GR, et al: Isolation of two distinct type I angiotensin II receptor genes. Biochem Biophys Res Commun 184:1067–1073, 1992.PubMedGoogle Scholar
  59. 59.
    Takeuchi K, Murphy TJ, Nakamura Y, et al: Molecular cloning of the rat vascular AT1 angiotensin II receptor gene. Hypertension 20:410, 1992.Google Scholar
  60. 60.
    Sasamura H, Hein L, Krieger JE, et al: Cloning, characterization, and expression of two angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem Biophys Res Commun 185:253–259, 1992.PubMedGoogle Scholar
  61. 61.
    Iwai N, Inagami T: Identification of two subtypes in the rat type I angiotensin II receptor. Febs Lett 298:257–260, 1992.PubMedGoogle Scholar
  62. 62.
    Kakar SS, Sellers JC, Devor DC, et al: Angiotensin II type-1 receptor subtype cDNAs: Differential tissue expression and hormonal regulation. Biochem Biophys Res Commun 183:1090–1096, 1992.PubMedGoogle Scholar
  63. 63.
    Sandberg K, Ji H, Clark AJL, et al: Cloning and expression of a novel angiotensin II receptor subtype. J Biol Chem 267:9455–9458, 1992.PubMedGoogle Scholar
  64. 64.
    Chiu AT, Dunscomb JH, McCall DE, et al: Characterization of angiotensin AT1A receptor isoform by its ligand binding signature. Regul Pept 44:141–147, 1993.PubMedGoogle Scholar
  65. 65.
    Kitami Y, Okura T, Marumoto K, et al: Differential gene expression and regulation of type-1 angiotensin II receptor subtypes in the rat. Biochem Biophys Res Commun 188:446–452, 1992.PubMedGoogle Scholar
  66. 66.
    Kakar SS, Riel KK, NeiII JD: Differential expression of angiotensin II receptor subtype mRNAs (AT-1A and AT-IB) in the brain. Biochem Biophys Res Commun 185:688–692, 1992.PubMedGoogle Scholar
  67. 67.
    Douglas JG, Romero M, Hopfer U: Signaling mechanisms coupled to the angiotensin receptor of proximal tubular epithelium. Kidney Int Suppl 30:s43–s47, 1990.PubMedGoogle Scholar
  68. 68.
    Brown GP, Douglas JG, Krontiris-Litowitz J: Properties of angiotensin II receptors of isolated rat glomeruli: Factors influencing binding affinity and comparative binding of angiotensin analogues. Endocrinology 106:1923–1929, 1980.PubMedGoogle Scholar
  69. 69.
    Brown GP, Douglas JG: Angiotensin II binding sites in rat and primate isolated renal tubular basolateral membranes. Endocrinology 112:2007–2014, 1983.PubMedGoogle Scholar
  70. 70.
    Ernsberger P, Zhou J, Damon TH, et al: Angiotensin II receptor subtypes in cultured rat mesangial cells. Am J Physiol 263:F411–F416, 1992.PubMedGoogle Scholar
  71. 71.
    Madhun ZT, Ernsberger P, Ke FC, et al: Signal transduction mediated by angiotensin II receptor subtypes expressed in rat renal mesangial cells. Regul Pept 44:149–157, 1993.PubMedGoogle Scholar
  72. 72.
    Heemskerk FM, Zorad S, Seltzer A, et al: Characterization of brain angiotensin II AT2 receptor subtype using [125I]-CGP 42112A. Neuroreport 4:103–105, 1993.PubMedGoogle Scholar
  73. 73.
    Chaki S, Inagami T: Identification and characterization of a new binding site for angiotensin II in mouse neuroblastoma neuro-2A cells. Biochem Biophys Res Commun 182:388–394, 1992.PubMedGoogle Scholar
  74. 74.
    Chaki S, Inagami T: A newly found angiotensin II receptor subtype mediates cyclic GMP formation in differentiated neuro-2A cells. Eur J Pharmacol 225:355–356, 1992.PubMedGoogle Scholar
  75. 75.
    Chaki S, Inagami T: New signaling mechanism of angiotensin II in neuroblastoma neuro-2A cells: Activation of soluble guanylyl cyclase via nitric oxide synthesis. Mol Pharmacol 43:603–608, 1993.PubMedGoogle Scholar
  76. 76.
    Le Noble FA, Schreurs NH, van Straaten HW, et al: Evidence for a novel angiotensin II receptor involved in angiogenesis in chick embryo chorioallantoic membrane. Am J Physiol 264:R460–R465, 1993.PubMedGoogle Scholar
  77. 77.
    Lassègue B, Griendling KK, Murphy TJ, et al: Regulation of angiotensin II receptor expression in vascular smooth muscle cells. FASEB J 6:A1859, 1992.Google Scholar
  78. 78.
    Makita N, Iwai N, Inagami T, et al: Two distinct pathways in the downregulation of type-1 angiotensin II receptor gene in rat glomerular mesangial cells. Biochem Biophys Res Commun 185:142–146, 1992.PubMedGoogle Scholar
  79. 79.
    Naville D, Lebrethon MC, Kermabon AY, et al: Characterization and regulation of the angiotensin II type-1 receptor (binding and mRNA) in human adrenal fasciculata-reticularis cells. FEBS Lett 321:184–188, 1993.PubMedGoogle Scholar
  80. 80.
    Iwai N, Inagami T: Regulation of the expression of the rat angiotensin II receptor mRNA. Biochem Biophys Res Commun 182:1094–1099, 1992.PubMedGoogle Scholar
  81. 81.
    Raizada MK, Sumners C, Lu D: Angiotensin II type 1 receptor mRNA levels in the brains of normotensive and spontaneously hypertensive rats. J Neurochem 60:1949–1952, 1993.PubMedGoogle Scholar
  82. 82.
    Raizada MK, Lu D, Tang W, et al: Increased angiotensin II type-1 receptor gene expression in neuronal cultures from spontaneously hypertensive rats. Endocrinology 132:1715–1722, 1993.PubMedGoogle Scholar
  83. 83.
    Tufro-McReddie A, Harrison JK, Everett AD, et al: Ontogeny of type 1 angiotensin II receptor gene expression in the rat. J Clin Invest 91:530–537, 1993.PubMedGoogle Scholar
  84. 84.
    Ohnishi J, Ishido M, Shibata T, et al: The rat angiotensin II AT1A receptor couples with three different signal transduction pathways. Biochem Biophys Res Commun 186:1094–1101, 1992.PubMedGoogle Scholar
  85. 85.
    Berridge MJ, Irvine RF: Inositol phosphates and cell signaling. Nature 341:197–205, 1989.PubMedGoogle Scholar
  86. 86.
    Socorro L, Alexander RW, Griendling KK: Cholera toxin modulation of angiotensin II-stimulated inositol phosphate production in cultured vascular smooth muscle cells. Biochem J 265:799–807, 1990.PubMedGoogle Scholar
  87. 87.
    Enyedi P, Mucsi I, Hunyady L, et al: The role of guanyl nucleotide binding proteins in the formation of inositol phosphates in adrenal glomerulosa cells. Biochem Biophys Res Commun 140:941–947, 1986.PubMedGoogle Scholar
  88. 88.
    Lynch CJ, Prpic V, Blackmore PF, et al: Effect of islet-activating pertussis toxin on the binding characteristics of Ca2+-mobilizing hormones and on agonist activation of phosphorylase in hepatocytes. Mol Pharmacol 29:196–203, 1986.PubMedGoogle Scholar
  89. 89.
    Hausdorff WP, Sekura RD, Aguilera G, et al: Control of aldosterone production by angiotensin II is mediated by two guanine nucleotide regulatory proteins. Endocrinology 120:1668–1678, 1987.PubMedGoogle Scholar
  90. 90.
    Berstein G, Blank JL, Smrcka AV, et al: Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase C-β1. J Biol Chem 267:8081–8088, 1992.PubMedGoogle Scholar
  91. 91.
    Brock TA, Alexander RW, Ekstein LS, et al: Angiotensin increases cytosolic free calcium in cultured vascular smooth muscle cells. Hypertension 7:1105–1109, 1985.Google Scholar
  92. 92.
    Griendling KK, Rittenhouse SE, Brock TA, et al: Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem 261:5901–5906, 1986.PubMedGoogle Scholar
  93. 93.
    Nishizuka Y: The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698, 1984.PubMedGoogle Scholar
  94. 94.
    Griendling KK, Tsuda T, Berk BC, et al: Angiotensin II stimulation of vascular smooth muscle. J Cardiovasc Pharmacol 14:S27–39, 1989.PubMedGoogle Scholar
  95. 95.
    Lassègue B, Alexander RW, Clark M, et al: Angiotensin II-induced phosphatidylcholine hydrolysis in cultured vascular smooth-muscle cells. Regulation and localization. Biochem J 276:19–25, 1991.PubMedGoogle Scholar
  96. 96.
    Lassègue B, Alexander RW, Clark M, et al: Phosphatidylcholine is a major source of phosphatidic acid and diacylglycerol in angiotensin II-stimulated vascular smooth muscle cells. Biochem J 292:509–517, 1993.PubMedGoogle Scholar
  97. 97.
    Martin TW, Michaelis K: P2-purinergic agonists stimulate phosphodiesteratic cleavage of phosphatidylcholine in endothelial cells. Evidence for activation of phospholipase D. J Biol Chem 264:8847–8856, 1989.Google Scholar
  98. 98.
    Anthes JC, Eckel S, Siegel MI, et al: Phospholipase D in homogenates from HL-60 granulocytes: Implications of calcium and G protein control. Biochem Biophys Res Commun 163:657–664, 1989.PubMedGoogle Scholar
  99. 99.
    Agwu DE, McPhail LC, Chabot MC, et al: Choline-linked phosphoglycerides. J Biol Chem 264:1405–1413, 1989.PubMedGoogle Scholar
  100. 100.
    Kanaho Y, Kanoh H, Nozawa Y: Activation of phospholipase D in rabbit neutrophils by fMet-Leu-Phe is mediated by a pertussis toxin-sensitive GTP-binding protein that may be distinct from a phospholipase C-regulating protein. Febs Lett 279:249–252, 1991.PubMedGoogle Scholar
  101. 101.
    Qian Z, Drewes LR: Muscarinic acetylcholine receptor regulates phosphatidylcholine phos-pholipase D in canine brain. J Biol Chem 264:21720–21724, 1989.PubMedGoogle Scholar
  102. 102.
    Garland LG: New pathways of phagocyte activation: The coupling of receptor-linked phos-pholipase D and the role of tyrosine kinase in primed neutrophils. FEMS Microbiol Immunol 105:229–238, 1992.Google Scholar
  103. 103.
    Billah MM, Anthes JC: The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 269:281–291, 1990.PubMedGoogle Scholar
  104. 104.
    OIIerenshaw JD, Lassègue B, Alexander RW, et al: Intracellular signaling in arteries and vascular smooth muscle cells in culture. In Mulvany MJ, Aalkjaer C, Heagerty AM, et al (eds): Resistance Arteries, Structure and Function. Amsterdam, Elsevier, 1991, pp 73–76.Google Scholar
  105. 105.
    Ohanian J, Ollerenshaw J, Collins P, et al: Agonist-induced production of 1,2-diacylglycerol and phosphatidic acid in intact resistance arteries. Evidence that accumulation of diacyl-glycerol is not a prerequisite for contraction. J Biol Chem 265:8921–8928, 1990.PubMedGoogle Scholar
  106. 106.
    Alexander RW, Gimbrone MAJ: Stimulation of prostaglandin E synthesis in cultured human umbilical vein smooth muscle cells. Proc Natl Acad Sci USA 73:1617–1620, 1976.PubMedGoogle Scholar
  107. 107.
    Schlondorff D, DeCandido S, Satriano JA: Angiotensin II stimulates phospholipases C and A2 in cultured rat mesangial cells. Am J Physiol 253:C113–C120, 1987.PubMedGoogle Scholar
  108. 108.
    Morduchowicz GA, Sheikh-Hamad D, Dwyer BE, et al: Angiotensin II directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system. J Membr Biol 122:43–53, 1991.PubMedGoogle Scholar
  109. 109.
    Madhun ZT, Goldthwait DA, McKay D, et al: An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J Clin Invest 88:456–461, 1991.PubMedGoogle Scholar
  110. 110.
    Burns KD, Homma T, Harris RC: The intrarenal renin-angiotensin system. Semin Nephro 13:13–30, 199Google Scholar
  111. 111.
    Pfeilschifter J, Bauer C: Pertussis toxin abolishes angiotensin II-induced phosphoinositide hydrolysis and prostaglandin synthesis in rat renal mesangial cells. Biochem J 236:289–294, 1986.PubMedGoogle Scholar
  112. 112.
    Lang U, Vallotton MB: Effects of angiotensin II and of phorbol ester on protein kinase C activity and on prostacyclin production in cultured rat aortic smooth-muscle cells. Biochem J 259:477–483, 1989.PubMedGoogle Scholar
  113. 113.
    Jard S, Cantau B, Jakobs KH: Angiotensin II and α-adrenergic agonists inhibit rat liver adenylate cyclase. J Biol Chem 256:2603–2606, 1981.PubMedGoogle Scholar
  114. 114.
    Crane JK, Campanile CP, Garrison JC: The hepatic angiotensin II receptor. II. Effect of guanine nucleotides and interaction with cyclic AMP production. J Biol Chem 257:4959–4965, 1982.PubMedGoogle Scholar
  115. 115.
    Pobiner BF, Hewlett EL, Garrison JC: Role of Ni in coupling angiotensin receptors to inhibition of adenylate cyclase in hepatocytes. J Biol Chem 260:16200–16209, 1985.PubMedGoogle Scholar
  116. 116.
    Khanum A, Dufau ML: Angiotensin II receptors and inhibitory actions in Leydig cells. J Biol Chem 263:5070–5074, 1988.PubMedGoogle Scholar
  117. 117.
    Bégeot M, Langlois D, Penhoat A, et al: Variations in guanine-binding proteins (Gs, Gi) in cultured bovine adrenal cells. Consequences on the effects of phorbol ester and angiotensin II on adrenocorticotropin-induced and cholera toxin-induced cAMP production. Eur J Biochem 174:317–321, 1988.PubMedGoogle Scholar
  118. 118.
    Allen IS, Gaa ST, Rogers TB: Changes in expression of a functional Gi protein in cultured rat heart cells. Am J Physiol 255:C51–C59, 1988.PubMedGoogle Scholar
  119. 119.
    Anand-Srivastava MB: Angiotensin II receptors negatively coupled to adenylate cyclase in rat myocardial sarcolemma. Involvement of inhibitory guanine nucleotide regulatory protein. Biochem Pharmacol 38:489–496, 1989.PubMedGoogle Scholar
  120. 120.
    Pobiner BF, Northup JK, Bauer PH, et al: Inhibitory GTP-binding regulatory protein Gi3 can couple angiotensin II receptors to inhibition of adenylyl cyclase in hepatocytes. Mol Pharmacol 40:156–167, 1991.PubMedGoogle Scholar
  121. 121.
    Brami B, Vilgrain I, Chambaz EM: Sensitization of adrenocortical cell adenylate cyclase activity to ACTH by angiotensin II and activators of protein kinase C. Mol Cell Endocrinol 50:131–137, 1987.PubMedGoogle Scholar
  122. 122.
    Rainey WE, Byrd EW, Sinnokrot RA, et al: Angiotensin II activation of cAMP and cortico-sterone production in bovine adrenocortical cells: Effects of nonpeptide angiotensin II antagonists. Mol Cell Endocrinol 81:33–41, 1991.PubMedGoogle Scholar
  123. 123.
    Langlois D, Bégeot M, Berthelon M-C, et al: Angiotensin II potentiates agonist-induced 3′,5′-cyclic adenosine monophosphate production by cultured bovine adrenal cells through protein kinase C and calmodulin pathways. Endocrinology 131:2189–2195, 1992.PubMedGoogle Scholar
  124. 124.
    Johnson MC, Aguilera G: Angiotensin-II receptor subtypes and coupling to signaling systems in cultured fetal fibroblasts. Endocrinology 129:1266–1274, 1991.PubMedGoogle Scholar
  125. 125.
    Johnson MC, Aguilera G: Studies on the mechanism of the novel stimulatory effect of angiotensin II on adenylate cyclase in rat fetal skin fibroblasts. Endocrinology 131: 2404–2412, 1992.PubMedGoogle Scholar
  126. 126.
    Kubalak SW, Webb JG: Angiotensin II enhancement of hormone-stimulated cAMP formation in cultured vascular smooth muscle cells. Am J Physiol 264:H86–H96, 1993.PubMedGoogle Scholar
  127. 127.
    Bird IM, Mason JI, Oka K, et al: Angiotensin-II stimulates an increase in cAMP and expression of 17α-hydroxylase cytochrome P450 in fetal bovine adrenocortical cells. Endocrinology 132:932–934, 1993.PubMedGoogle Scholar
  128. 128.
    Smith JB: Angiotensin-receptor signaling in cultured vascular smooth muscle cells. Am J Physiol 250:F759–769, 1986.PubMedGoogle Scholar
  129. 129.
    Blayney LM, Gapper PW, Newby AC: Vasoconstrictor agonists activate G-protein-dependent receptor-operated calcium channels in pig aortic microsomes. Biochem J 282:81–84, 1992.PubMedGoogle Scholar
  130. 130.
    Hescheler J, Rosenthal W, Hinsch KD, et al: Angiotensin II-induced stimulation of voltage-dependent Ca2+ currents in an adrenal cortical slice. EMBO J 7:619–624, 1988.PubMedGoogle Scholar
  131. 131.
    Ohya Y, Sperelakis N: Involvement of a GTP-binding protein in stimulating action of angiotensin II on calcium channels in vascular smooth muscle cells. Circ Res 68:763–771, 1991.PubMedGoogle Scholar
  132. 132.
    Baker KM, Singer HA, Aceto JF: Angiotensin II receptor-mediated stimulation of cytosolic-free calcium and inositol phosphates in chick myocytes. J Pharmacol Exp Ther 251:578–585, 1989.PubMedGoogle Scholar
  133. 133.
    Baker KM, Booz GW, Dostal DE: Cardiac actions of angiotensin II: Role of an intracardiac renin—angiotensin system. Annu Rev Physiol 54:227–241, 1992.PubMedGoogle Scholar
  134. 134.
    Dosemeci A, Dhallan RS, Cohen NM, et al: Phorbol ester increases calcium current and simulates the effects of angiotensin II on cultured neonatal rat heart myocytes. Circ Res 62:347–357, 1988.PubMedGoogle Scholar
  135. 135.
    Cohen CJ, McCarthy RT, Barret PQ, et al: Ca2+ channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca2+ channel current. Proc Natl Acad Sci USA 85:2412–2416, 1988.PubMedGoogle Scholar
  136. 136.
    Quinn SJ, Cornwall MC, Williams GH: Electrophysiological responses to angiotensin II of isolated rat adrenal glomerulosa cells. Endocrinology 120:1581–1589, 1987.PubMedGoogle Scholar
  137. 137.
    Brauneis U, Vassilev PM, Quinn SJ, et al: 5ANG II blocks potassium currents in zona glomerulosa cells from rat, bovine, and human adrenals. Am J Physiol 260:E772–E779, 1991.PubMedGoogle Scholar
  138. 138.
    Hoyer J, Popp R, Meyer J, et al: Angiotensin II, vasopressin and GTP[γ-S] inhibit inward-rectifying K+ channels in porcine cerebral capillary endothelial cells. J Membr Biol 123:55–62, 1991.PubMedGoogle Scholar
  139. 139.
    Moorman JR, Kirsch GE, Lacerda AE, et al: Angiotensin II modulates Na+ channels in neonatal rat. Cir Res 65:1804–1809, 1989.Google Scholar
  140. 140.
    Berk BC, Brock TA, Gimbrone MAJ, et al: Early agonist-mediated ionic events in cultured vascular smooth muscle cells. Calcium mobilization is associated with intracellular acidification. J Biol Chem 262. 5065–5072, 1987.PubMedGoogle Scholar
  141. 141.
    Chuang M, Dell KR, Severson DL: Protein kinase C does not regulate diacylglycerol metabolism in aortic smooth muscle cells. Mol Cell Biochem 96:69–77, 1990.PubMedGoogle Scholar
  142. 142.
    Severson DL, Hee-Cheong M: Diacylglycerol metabolism in isolated aortic smooth muscle cells. Am J Physiol 256:C11–C17, 1989.PubMedGoogle Scholar
  143. 143.
    Griendling KK, Berk BC, Alexander RW: Evidence that Na+/H + exchange regulates angiotensin II-stimulated diacylglycerol accumulation in vascular smooth muscle cells. J Biol Chem 263:10620–10624, 1988.PubMedGoogle Scholar
  144. 144.
    Vallotton MB, Capponi AM, Johnson EI, et al: Mode of action of angiotensin II and vasopressin on their target cells. Horm Res 34:105–110, 1990.PubMedGoogle Scholar
  145. 145.
    Quinn SJ, Williams GH, Tillotson DL: Calcium oscillations in single adrenal glomerulosa cells stimulated by angiotensin II. Proc Natl Acad Sci USA 85:5754–5758, 1988.PubMedGoogle Scholar
  146. 146.
    Johnson EM, Theler JM, Capponi AM, et al: Characterization of oscillations in cytosolic free Ca2+ concentration and measurement of cytosolic Na+ concentration changes evoked by angiotensin II and vasopressin in individual rat aortic smooth muscle cells. Use of microfluorometry and digital imaging. J Biol Chem 266:12618–12626, 1991.PubMedGoogle Scholar
  147. 147.
    Tsuda T, Kawahara Y, Shii K, et al: Vasoconstrictor-induced protein—tyrosine phosphorylation in cultured vascular smooth muscle cells. FEBS Lett 285:44–48, 1991.PubMedGoogle Scholar
  148. 148.
    Tsuda T, Griendling KK, Alexander RW: Angiotensin II stimulates vimentin phosphorylation via a Ca2+-dependent, protein kinase C-independent mechanism in cultured vascular smooth muscle cells. J Biol Chem 263:19758–197563, 1988.PubMedGoogle Scholar
  149. 149.
    Tsuda T, Griendling KK, Ollerenshaw JD, et al: Angiotensin II-and endothelin-induced protein phosphorylation in cultured vascular smooth muscle cells. J Vascular Res 30:241–249, 1993.Google Scholar
  150. 150.
    Tsuda T, Alexander RW: Angiotensin II stimulates phosphorylation of nuclear lamins via a protein kinase C-dependent mechanism in cultured vascular smooth muscle cells. J Biol Chem 265:1165–1170, 1990.PubMedGoogle Scholar
  151. 151.
    Pfeilschifter J, Ochsner M, Whitebread S, et al: Down-regulation of protein kinase C potentiates angiotensin II-stimulated polyphosphoinositide hydrolysis in vascular smooth muscle cells. Biochem J 262:285–291, 1989.PubMedGoogle Scholar
  152. 152.
    Griendling KK, Delafontaine P, Rittenhouse SE, et al: Correlation of receptor sequestration with sustained diacylglycerol accumulation in angiotensin II-stimulated cultured vascular smooth muscle cells. J Biol Chem 262:14555–14562, 1987.PubMedGoogle Scholar
  153. 153.
    Linas SL, Marzec-Calvert R, Ullian ME: K depletion alters angiotensin II receptor expression in vascular smooth muscle cells. Am J Physiol 258:C849–C854, 1990.PubMedGoogle Scholar
  154. 154.
    Gunther S, Gimbrone MA, Jr, Alexander RW: Regulation by angiotensin II of its receptors in resistance blood vessels. Nature 287:230–232, 1980.PubMedGoogle Scholar
  155. 155.
    Schiffrin EL, Gutkowska J, Genest J: Effect of angiotensin II and deoxycorticosterone infusion on vascular angiotensin II receptors in rats. Am J Physiol 246:H608–H614, 1984.PubMedGoogle Scholar
  156. 156.
    Kitamura E, Kikkawa R, Fujiwara Y, et al: Effect of angiotensin II infusion on glomerular angiotensin II receptor in rats. Biochim Biophys Acta 885:309–316, 1986.PubMedGoogle Scholar
  157. 157.
    Mann JFE, Leidig M, Ritz E: Human angiotensin II receptors are regulated by angiotensin II. Clin Exp Hypertens [a] 10:151–168, 1988.Google Scholar
  158. 158.
    Bouscarel B, Wilson PB, Blackmore PF, et al: Agonist-induced downregulation of the angiotensin II receptor in primary cultures of rat hepatocytes. J Biol Chem 263:14920–14924, 1988.PubMedGoogle Scholar
  159. 159.
    Anderson KM, Murahashi T, Dostal DE, et al: Morphological and biochemical analysis of angiotensin II internalization in cultured rat aortic smooth muscle cells. Am J Physiol 264:C179–C188, 1993.PubMedGoogle Scholar
  160. 160.
    Ullian ME, Linas SL: Role of receptor cycling in the regulation of angiotensin II surface receptor number and angiotensin II uptake in rat vascular smooth muscle cells. J Clin Invest 84:840–846, 1989.PubMedGoogle Scholar
  161. 161.
    Schelling JR, Hanson AS, Marzec R, et al: Cytoskeleton-dependent endocytosis is required for apical type 1 angiotensin II receptor-mediated phospholipase C activation in cultured rat proximal tubule cells. J Clin Invest 90:2472–2480, 1992.PubMedGoogle Scholar
  162. 162.
    Reagan LP, Ye X, Maretzski CH, et al: Down-regulation of angiotensin II receptor subtypes and desensitization of cyclic GMP production in neuroblastoma N1E-115 cells. J Neurochem 60:24–31, 1993.PubMedGoogle Scholar
  163. 163.
    Ullian ME, Linas SL: Angiotensin II surface receptor coupling to inositol trisphosphate formation in vascular smooth muscle cells. J Biol Chem 265:195–200, 1990.PubMedGoogle Scholar
  164. 164.
    Tsutsumi K, Saavedra JM: Heterogeneity of angiotensin II AT2 receptors in the rat brain. Mol Pharmacol 41:290–297, 1992.PubMedGoogle Scholar
  165. 165.
    Speth RC: [125I]CGP 42112 binding reveals differences between rat brain and adrenal AT2 receptor binding sites. Regul Pept 44:189–197, 1993.PubMedGoogle Scholar
  166. 166.
    Pucell AG, Hodges JC, Sen I, et al: Biochemical properties of the ovarian granulosa cell type 2-angiotensin II receptor. Endocrinology 128:1947–1959, 1991.PubMedGoogle Scholar
  167. 167.
    Grady EF, Sechi LA, Griffin CA, et al: Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88:921–933, 1991.PubMedGoogle Scholar
  168. 168.
    Feuillan PP, Millan MA, Aguilera G: Angiotensin II binding sites in the rat fetus: Characterization of receptor subtypes and interaction with guanyl nucleotides. Regul Pept 44:159–169, 1993.PubMedGoogle Scholar
  169. 169.
    Tsutsumi K, Saavedra JM: Characterization of AT2 angiotensin II receptors in rat anterior cerebral arteries. Am J Physiol 261:H667–H670, 1991.PubMedGoogle Scholar
  170. 170.
    Pucell AG, Bumpus FM, Husain A: Regulation of angiotensin II receptors in cultured rat ovarian granulosa cells by follicle-stimulating hormone and angiotensin II. J Biol Chem 263:11954–11961, 1988.PubMedGoogle Scholar
  171. 171.
    Toney GM, Porter JP: Functional role of brain AT1 and AT2 receptors in the central angiotensin II pressor response. Brain Res 603:57–63, 1993.PubMedGoogle Scholar
  172. 172.
    Widdop RE, Gardiner SM, Kemp PA, et al: Central administration of PD 123319 or EXP-3174 inhibits effects of angiotensin II. Am J Physiol 264:H117–H125, 1993.PubMedGoogle Scholar
  173. 173.
    Sumners C, Tang W, Zelezna B, et al: Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain. Proc Natl Acad Sci USA 88:7567–7571, 1991.PubMedGoogle Scholar
  174. 174.
    Sumners C, Myers LM: Angiotensin II decreases cGMP levels in neuronal cultures from rat brain. Am J Physiol 260:C79–C87, 1991.PubMedGoogle Scholar
  175. 175.
    Bottari SP, King IN, Reichlin S, et al: The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183:206–211, 1992.PubMedGoogle Scholar
  176. 176.
    Zarahn ED, Ye X, Ades AM, et al: Angiotensin-induced cyclic GMP production is mediated by multiple receptor subtypes and nitric oxide in N1E-115 neuroblastoma cells. J Neurochem 58:1960–1963, 1992.PubMedGoogle Scholar
  177. 177.
    Chiu AT, McCall DE, Nguyen TT, et al: Discrimination of angiotensin II receptor subtypes by dithiothreitol. Eur J Pharmacol 170:117–118, 1989.PubMedGoogle Scholar
  178. 178.
    Chang RS, Lotti VJ: Angiotensin receptor subtypes in rat, rabbit and monkey tissues: Relative distribution and species dependency. Life Sci 49:1485–1490, 1991.PubMedGoogle Scholar
  179. 179.
    Kambayashi Y, Bardhan S, Takahashi K, et al: Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546, 1993.PubMedGoogle Scholar
  180. 180.
    Mukoyama M, Nakajima M, Horiuchi M, et al: Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539–24542, 1993.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Bernard Lassègue
    • 1
  • Kathy K. Griendling
    • 1
  • R. Wayne Alexander
    • 1
  1. 1.Cardiology DivisionEmory University School of MedicineAtlantaUSA

Personalised recommendations