Advertisement

Lipoprotein Labeling and Analysis Techniques

  • P. Angelberger
Part of the NATO ASI Series book series (NSSA, volume 262)

Abstract

In human plasma Low Density Lipoprotein (LDL) is the major transport protein for endogenous cholesterol being transferred between body tissues. It is a spheric macromolecule (d 2160 nm, MW 2600 kD) with a lipid core consisting mainly of cholesterol esters (42 % w/w of LDL), phospholipids (22 %), free cholesterol (8 %) and triglycerides (6 %). The particle surface is formed by a protein helix (22 %), in case of LDL apoprotein B-100 (MW 500 kD) which is recognized by specific receptors located on the surface of liver cells and other tissue cells whereas vascular cells contain only very few LDL receptors. This leads to receptor binding of LDL followed by cellular uptake and lysosomal degradation of about 2/3 of LDL particles thereby maintaining cholesterol homeostasis1. Reduced numbers or reduced activity of LDL receptors cause elevated plasma cholesterol levels that are associated with progression of atherosclerosis. Localized endothelial damage promotes increased uptake (not yet proven to be LDL-receptor-mediated) and degradation of LDL by vascular smooth-muscle cells and macrophage foam cells of the intima. These are the earliest detectable events that can develop into an atherosclerotic plaque2, 3. Thus high interest is evident in radiolabeled LDL as tracer and receptor ligand to study these processes.

Keywords

Radiochemical Purity Cellulose Acetate Electrophoresis Iodine Monochloride Elevated Plasma Cholesterol Level Early Detectable Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Goldstein, T. Kita, M.S. Brown, N. Engl. J. Med. 309: 288–296 (1983).Google Scholar
  2. 2.
    H. Sinzinger, H. Bergmann, J. Kaliman, P. Angelberger: Imaging of human atherosclerotic lesions using 123I-Low-Density-Liporoteins. Eur. J. Nucl. Med., 12: 291–292 (1985).CrossRefGoogle Scholar
  3. 3.
    H. Sinzinger, P. Angelberger, H. Pesl, J. Flores: Further insights into lipid lesion imaging by means of 123I-labeled autologous LDL. In: G. Crepaldi et al, Eds. Atherosclerosis VIII. Excerpta Medica 1989: 645–653.Google Scholar
  4. 4.
    M.S. Brown, J.L. Goldstein: Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. USA, 71: 788–792 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Hüttinger, J.M. Corbett, W.J. Schneider, J.T. Willerson, M.S. Brown, J.L. Goldstein: Imaging of hepatic low-density liproprotein receptors by radionuclide scintiscanning in vivo. Proc. Natl. Acad. Sci. USA, 81: 7599–7603 (1984).CrossRefGoogle Scholar
  6. 6.
    T. Langer, W. Strober, R.I. Levy: The metabolism of LDL in familial type II hyperlipoproteinemia. J. Clin. Invest., 51: 1528–1536 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    R.C. Pittman, T.E. Carew, C.K. Glass, S.R. Green, C.A. Taylor, A.D. Attie: A radioiodinated intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo. Biochem. J., 212: 791–800 (1983).PubMedGoogle Scholar
  8. 8.
    L. Virgolini, P. Angelberger, J. Pidlich, G. Lupattelli, E. Molinar, H. Sinzinger: Comparison of different methods for LDL-isolation and radioiodine labeling on liver receptor binding. Int. J. Nucl. Med. Biol., 78: 513–517 (1991).Google Scholar
  9. 9.
    R.S. Lees, H.D. Garabedian, A.M. Lees, J Schumacher, A. Miller, J.L. Jsaacsohn, A. Derksen, H.W. Strauss: Technetium-99m low density lipoproteins: preparation and biodistribution. J. Nucl. Med., 26: 1056–1062 (1985).PubMedGoogle Scholar
  10. 10.
    P. Angelberger, M. Hüttinger, R. Dudczak: Comparative study of 123I-and 99mTc-Low Density Leprproteins (LDL). J. Lab. Compd. Radiopharm., 23: 1309–1311 (1986).Google Scholar
  11. 11.
    P. Angelberger, M. Hüttinger, R. Dudczak, T. Leitha: Development of 99mTc-Low Density Lipoprotein (LDL) with high radiochemical purity at tracer application. J. Lab. Compd. Radiopharm., 26: 271–273 (1989).CrossRefGoogle Scholar
  12. 12.
    T. Leitha, M. Hüttinger, P. Angelberger, R. Dudczak: 99mTc-LDL as tracer for quantitative LDL scintigraphy. I) tracer purification, in vitro validation and biodistribution. Eur. J. Nucl. Med (in press)Google Scholar
  13. 13.
    J.M. Rosen, S.P. Butler, G.E. Meinken, T.S. Wang, R. Ramakrishnan, S.C. Srivastava, P.O. Alderson, H.N. Ginsberg: 111In-labeled LDL: a potential agent for imaging atherosclerotic disease and lipoprotein biodistribution. 7. Nucl. Med., 31: 343–350 (1990).Google Scholar
  14. 14.
    I. Virgolini, P. Angelberger, S.R. Li, F. Koller, E. Roller, J. Pidlich, G. Lupatelli, H. Sinzinger: 111In-labeled Low-Density Lipoprotein binds with higher affinity to the human liver as compared to 123I-labeled LDL. J. Nucl. Med., 32: 2132–2138 (1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • P. Angelberger
    • 1
  1. 1.Austrian Research Center SeibersdorfAustria

Personalised recommendations