Quasiparticle’s Spin and Fractional Statistics in the Fractional Quantum Hall Effect

  • Dingping Li
Part of the NATO ASI Series book series (NSSB, volume 324)


The possibility of fractional statistics on two dimensional surfaces was discovered in Ref. [1–3]. When two fractional-statistics particles (anyons) are interchanged, the wave function changes by a phase exp(), where θ is neither given by θ = 0 (Bose statistics) nor by θ = π (Fermi statistics). Fractional statistics has attracted a lot of attention after it was found that a gas of fractional statistics objects should be superconducting and could provide a mechanism for high-T c superconductivity [4]. Furthermore, the quasiparticles in fractional quantum Hall systems (for a review on the fractional quantum Hall effect (FQHE), see Ref. [5]) are anyons [6, 7] and this picture had been used to construct the hierarchical wave function in the FQHE [7] (for a review, see Refs. [8, 9]). On higher dimensional spaces (D > 2), only Fermions and Bosons exist and the Fermions’ spin is half-integer, the Bosons’ spin is integer. It will be very interesting to know what is the spin of anyons and the spin-statistics relation of anyons. The spin-statistics relation of anyons is a generalized one if the spin s satisfies s = θ/2π. In various models, for example, in non-linear sigma models, Chern-Simons field theories and relativistic quantum field theories on 2D dimensional spaces, anyons indeed satisfy the generalized spin-statistics relation [10, 11]. Naturally, we will ask the question what is the spin-statistics relation of the quasiparticle in the FQHE. Recent discussions of the quasiparticle’s spin (QPS) can be found in Refs. [12–15]. Refs. [12, 13] calculated the QPS by analyzing the hierarchical wave function or by calculating the Berry phase of the quasiparticles moving in a closed path on the sphere. Ref. [14] obtained the QPS by analyzing the Ginzburg-Laudau-Chern-Simons (GLCS) theory of the FQHE on the sphere.


Riemann Surface Braid Group Berry Phase Quasi Particle Fractional Quantum Hall Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Leinaas and J. Myrheim, Nuovo Cimento B ,37, 1 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    G.A. Goldin, R. Menikoffand D.H. Sharp, J. Math. Phys. ,22, 1664 (1981).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    F. Wilczek, Phys. Rev. Lett ,49, 957 (1982).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    R.B. Laughlin, Phys. Rev. Lett ,60, 2677 (1988);ADSCrossRefGoogle Scholar
  5. 4a.
    V. Kalmeyer and R.B. Laughlin, Phys. Rev. Lett ,59, 2095 (1988);ADSCrossRefGoogle Scholar
  6. 4b.
    C.B. Hanna, R.B. Laughlin and A.L. Fetter, Phys. Rev. ,B40, 8745 (1989);ADSGoogle Scholar
  7. 4c.
    C.B. Hanna, R.B. Laughlin and A.L. Fetter, Phys. Rev. ,B39, 9679 (1989);ADSGoogle Scholar
  8. 4d.
    X.G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B ,39, 11413 (1989);ADSCrossRefGoogle Scholar
  9. 4e.
    Y.H. Chen, F. Wilczek, E. Witten, and B. Halperin, Int. J. Mod. Phys. B ,3, 1001 (1989).MathSciNetADSCrossRefGoogle Scholar
  10. 5.
    R. Prange and S. Girvin, “The Quantum Hall Effect”, Springer-Verlag, New York, Heidelberg, 1990, 2nd ed. and references therein.CrossRefGoogle Scholar
  11. 6.
    D. Arovas, J.R. Schriffer and F. Wilczek, Phys. Rev. Lett. ,53 , 722 (1984).ADSCrossRefGoogle Scholar
  12. 7.
    B.I. Halperin, Phys. Rev. Lett. ,52, 1583 (1984); 52, 2390(E) (1984).ADSCrossRefGoogle Scholar
  13. 8.
    F. Wilczek, “Fractional Statistics and Anyon Superconductivity”, World Scientific, Singapore, 1990 and references therein.Google Scholar
  14. 9.
    R. Iengo and K. Lechner, Phys. Rep. C ,213, 179 (1992) and references therein.MathSciNetADSCrossRefGoogle Scholar
  15. 10.
    R.D. Tscheuschner, Int. J. Theoretical Phys. ,28, 1269 (1989) and references therein.MathSciNetADSMATHCrossRefGoogle Scholar
  16. 11.
    J. Fröhlich and P.A. Marchetti, Nucl. Phys. B ,356, 533 (1991).ADSCrossRefGoogle Scholar
  17. 12.
    D. Li, Phys. Lett. A ,169, 82 (1992).ADSCrossRefGoogle Scholar
  18. 13.
    D. Li, Phys. Rev. B ,47, 13370 (1993).ADSCrossRefGoogle Scholar
  19. 14.
    X.G. Wen and A. Zee, Phys. Rev. Lett ,69, 953 (1992); Erratum: 69, 3000 (1992).ADSCrossRefGoogle Scholar
  20. 15.
    S.L. Sondhi and S.A. Kivelson, Phys. Rev. B ,46, 13319 (1992).ADSCrossRefGoogle Scholar
  21. 16.
    Y.-S. Wu, Phys. Rev. Lett ,52, 2103 (1984).MathSciNetADSCrossRefGoogle Scholar
  22. 17.
    D. Thouless and Y.-S. Wu, Phys. Rev. B ,31, 1191 (1985).MathSciNetADSCrossRefGoogle Scholar
  23. 18.
    T. Einarsson, Phys. Rev. Lett ,64, 1995 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 19.
    X.G. Wen, E. Daggoto and E. Fradkin, Phys. Rev. B ,42, 6110 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  25. 20.
    T. Einarsson, Mod. Phys. Lett. B ,5, 675 (91) and references therein.Google Scholar
  26. 21.
    T. Imbo and J. March-Russell, Phys. Lett B ,252, 84 (1990).MathSciNetADSCrossRefGoogle Scholar
  27. 22.
    A.P. Balachandran, T. Einarsson, T.R. Govindarajan and R. Ramachandran, Mod. Phys. Lett. A ,6, 2801 (1990).MathSciNetADSCrossRefGoogle Scholar
  28. 23.
    F. Wilczek, Phys. Rev. Lett ,69, 132 (1992) and references therein.MathSciNetADSCrossRefGoogle Scholar
  29. 24.
    R. Iengo and D. Li, Quantum mechanics and quantum Hall effect on Riemann surfaces, preprint, SISSA/ISAS/100/93/EP, to appear in Nucl. Phys. B..Google Scholar
  30. 25.
    J. Fröhlich and A. Zee, Nucl. Phys. B ,364, 517 (1991).ADSCrossRefGoogle Scholar
  31. 26.
    F.D.M. Haldane, Phys. Rev. Lett ,51, 605 (1983).MathSciNetADSCrossRefGoogle Scholar
  32. 27.
    B. Blok and X.G. Wen, Phys. Rev. B ,42, 8145 (1990); ibid. 43, 8337 (1991).ADSCrossRefGoogle Scholar
  33. 28.
    N. Read, Phys. Rev. Lett ,65, 1502 (1990).ADSCrossRefGoogle Scholar
  34. 29.
    G. Moore and N. Read, Nucl. Phys. B ,360, 362 (1991).MathSciNetADSCrossRefGoogle Scholar
  35. 30.
    D. Li, Int. J. Mod. Phys. B, 7 ,2655 (1993).ADSCrossRefGoogle Scholar
  36. 31.
    D. Li, Int. J. Mod. Phys. B, 7 ,2779 (1993).ADSCrossRefGoogle Scholar
  37. 32.
    J.K. Jain, Phys. Rev. Lett ,63, 199 (1989); Phys. Rev. B ,40, 8079 (1989); 41, 7653 (1990); Adv. in Phys. 41, 105 (1992).ADSCrossRefGoogle Scholar
  38. 33.
    F.D.M. Haldane and E.H. Rezayi, Phys. Rev. B ,31, 2529 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Dingping Li
    • 1
  1. 1.International School for Advanced studies, SISSATriesteItaly

Personalised recommendations