Flat Non-Regular States on Weyl Algebras

  • F. Acerbi
Part of the NATO ASI Series book series (NSSB, volume 324)

Abstract

Some models of Many Body Theory and Quantum Statistical Mechanics are for mulated and sometimes solved in terms of variables or fields which formally satisfy the Canonical Commutation Relations (CCR), but which actually cannot be represented as operators in a Hilbert space because of their bad infrared behaviour1,2. Typical examples are:
  1. 1.

    the infinite quantum harmonic lattice in thermal equilibrium and the Free Bose gas, both in space dimensions d ≤ 2 3,4;

     
  2. 2.

    the electrons in a periodic potential (Bloch electrons)3;

     
  3. 3.

    the massless scalar field in two space-time dimensions5.

     
The strategies usually adopted to discuss the above models fall essentially in two categories: to represent the singular fields as operators on an indefinite metric space5; or to use a restricted set of field variables and describe the remaining degrees of freedom as morphisms of the regular field algebra6.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Acerbi, G. Morchio and F. Strocchi, Infrared singular fields and nonregular representations of CCR algebras, J. Math. Phys. ,34, 899 (1993).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    F. Acerbi, G. Morchio and F. Strocchi, Theta vacua, charge confinement and charged sectors from nonregular representations of CCR algebras, Lett. Math. Phys. ,27, 1 (1993).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    N.W. Ashcroft and N.D. Mermin, “Solid State Physics,” Holt-Saunders, Tokyo, Philadelphia (1981).Google Scholar
  4. 4.
    O. Bratteli and D.W. Robinson, “Operator Algebras and Quantum Statistical Mechanics,” vol. I and II. Springer-Verlag, Berlin, Heidelberg, New York (1981).MATHGoogle Scholar
  5. 5.
    A. S. Wightman, Introduction to some aspects of the relativistic dynamics of quantized fields, in: “High Energy Electromagnetic Interactions and Field Theory,” M.Levy ed., Cargèse 1964, 171, Gordon and Breach, New York, London, Paris (1967).Google Scholar
  6. 6.
    R. F. Streater and I. F. Wilde, Fermion states of a boson field, Nucl. Phys. B ,24, 561 (1970).ADSCrossRefGoogle Scholar
  7. 7.
    J. Slawny, On factor representations and the C*-algebra of canonical commutation relations, Commun. Math. Phys. 24, 151 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    J. Manuceau, M. Sirugue, D. Testard and A. Verbeure, The smallest C*-algebra for canonical commutation relations, Commun. Math. Phys. ,32, 231 (1973).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    D. Petz. “An Invitation to the Algebra of Canonical Commutation Relations,” Leuven Notes in Mathematical and Theoretical Physics 2, Series A: Mathematical Physics, Leuven University Press (1990).MATHGoogle Scholar
  10. 10.
    D. Buchholz and K. Fredenhagen, Locality and the structure of particle states in gauge field theory, in: “Mathematical Problems in Theoretical Physics,” Berlin 1981 Lecture notes in Physics 153, 368, Springer-Verlag, Berlin, Heidelberg, New York (1982).Google Scholar
  11. 11.
    H.B.G.S. Grundling and C.A. Hurst, Algebraic quantization of systems with a gauge degeneracy, Commun. Math. Phys. ,98, 369 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Hurst C.A.: Dirac’s theory of constraints, in: “Recent Developments in Mathematical Physics,” Schladming 1987, 18, Springer-Verlag, Berlin, Heidelberg, New York (1987).Google Scholar
  13. 13.
    R. Jackiw, Topological investigations of quantized gauge theories, in: “ Current Algebra and Anomalies,” 263, World Scientific, Singapore (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • F. Acerbi
    • 1
  1. 1.International School for Advanced Studies and GNFMTriesteItaly

Personalised recommendations