Advertisement

Genetic Mapping, an Overview

  • Jacques S. Beckmann

Abstract

Genetic analysis is likely to play an increasing role in the elucidation of the genomic architecture and their evolution, but also of the functions encoded in the genes themselves. It is but a matter of time before the entire sequence of each one of the 24 human chromosomes (22 autosomes and a pair of sex chromosomes) will be completely determined, i.e., the exact linear ordering of over 3 billion nucleotides constituting the human genome will be known. One may, therefore, wonder whether the interest in genetic studies will survive this fantastic challenge, the deciphering of the genome. It is our contention that this interest is genuine and will legitimately preoccupy scientists for years to come. The main reasons for this are that the message(s) of the DNA sequence information itself remains obscure, that we still lack the capacity to understand its many superimposed meanings. Adequate genetic questions will enable us to progress towards this endeavour. But there is also a second simpler reason for continuing with genetic studies. Indeed, not all genetic disorders have been characterised so far. And of those identified, almost all of the pathologies of complex etiology, such as multi-factorial diseases, still await elucidation. Furthermore, our interest in biology goes beyond genetic disorders, and there will be a time where other traits will be in the limelight. For all these, genetics seems to be an inevitable path.

Keywords

Duchenne Muscular Dystrophy Spinocerebellar Ataxia Candidate Gene Approach Limb Girdle Muscular Dystrophy Informative Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collins, F. 1992. Positional cloning: Let’s not call it reverse anymore. Nature genetics 1: 3–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Orkin, S.H. 1986. Reverse genetics and human diseases. Cell 47: 845–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Beckmann, J.S., I. Richard, et al., (1991). A gene for limb-girdle muscular dystrophy maps to chromosome 15 by linkage. C. R. Acad. Sci. 312, Série III: 141–148.Google Scholar
  4. 4.
    Ott, J. 1991. Analysis of Human Genetic Linkage. Baltimore: John Hopkins University Press.Google Scholar
  5. 5.
    Litt, M., and J. A. Luty. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44: 397–401.PubMedGoogle Scholar
  6. 6.
    Weber, J. L., and P. E. May. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388–396.PubMedGoogle Scholar
  7. 7.
    Weissenbach, J., G. Gyapay, C. Dib, A. Vignal, J. Morissette, Ph. Millasseau, G. Vaysseix and M. Lathrop. 1992. A second generation linkage map of the human genome. Nature 359: 794–801.PubMedCrossRefGoogle Scholar
  8. 8.
    Dietrich, W., H. Katz, S.E. Lincoln, H.-S. Shin, J. Friedmann, N.C. Dracopoli and E. S. Lander. 1992. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423–47.PubMedGoogle Scholar
  9. 9.
    Serikawa, T., T. Kuramoto, P. Hilbert, M. Mori, J. Yamada, C.J. Dubay, J.-L. Guenet, G.M. Lathrop, and J.S. Beckmann. 1992. Rat gene mapping using PCR-analyzed microsatellites. Genetics 131: 701–721.PubMedGoogle Scholar
  10. 10.
    O’Brien, S.J., J.E. Womack, L.A. Lyons, K.J. Moore, N.A. Jenkins and N.G. Copeland. 1993. Anchored reference loci for comparative genome mapping in mammals. Nature genetics 3: 103–112.PubMedCrossRefGoogle Scholar
  11. 11.
    Hilbert, P., K. Lindpaintner, J. S. Beckmann, T. Serikawa, F. Soubrier, C. Dubay, P. Cartwright, B. De Gouyon, C. Julier, S. Takahasi, M. Vincent, D. Ganten, M. Georges and G. M. Lathrop, 1991 Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353: 521–529.PubMedCrossRefGoogle Scholar
  12. 12.
    Jacobs, H. J., K. Lindpaintner, S. E. Lincoln, K. Kusumi, R. K. Bunker, Y. -P. Mao, D. Ganten, V. J. Dzau and E. S. Lander. 1991. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67: 213–224.CrossRefGoogle Scholar
  13. 13.
    Jeunemaitre, X., R.P. Lifton, S.C. Hunt, R.R. Williams and J.-M. Lalouel, 1992. Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nature genetics 1: 72–75.PubMedCrossRefGoogle Scholar
  14. 14.
    Cambien, F., O. Poirier, et al., 1992. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359: 641–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Froguel, Ph., M. Vaxillaire, F. Sun, G. Velho, H. Zouali, M.O. Butel, S. Lesage, N. Vionnet, K. Clément, F. Fougerousse, Y. Tanizawa, J. Weissenbach, J.S. Beckmann, G.M. Lathrop, Ph. Passa, M.A. Permutt and D. Cohen. 1992. The glucokinase locus on chromosome 7p is closely linked to early onset non-insulin dependent diabetes mellitus. Nature 356: 162–164.PubMedCrossRefGoogle Scholar
  16. 16.
    Froguel, P., H. Zouali, N. Vionnet, G. Velho, M. Vaxillaire, F. Sun, S. Lesage, M.-O. Butel, M. Stoffel, J. Takeda, P. Passa, A. Permutt, J.S. Beckmann, G. Bell and D. Cohen. 1993. Familial hyperglycemia due to mutations in glucokinase: Defmition of a subtype of diabetes mellitus. N. Engl. J. Med. 328: 697–702.PubMedCrossRefGoogle Scholar
  17. 17.
    Morton. N.E. 1955. Sequential tests for the detection of linkage. Am. J. Hum. Genet. 7: 277–318.PubMedGoogle Scholar
  18. 18.
    Ott, J. 1974. Estimation of the recombination fraction in human pedigrees: Efficient computation of the likelihood for human linkage studies. Am. J. Hum. Genet. 26: 588–97.PubMedGoogle Scholar
  19. 19.
    Lathrop, G. M., and J. M. Lalouel, 1984 Easy calculations of lod scores and genetic risks on small computers. Am. J. Hum. Genet. 36: 460–465.PubMedGoogle Scholar
  20. 20.
    Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln and L. Newburg. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Goldgar, D.E.P., P. Green, D.M. Parry and J.J. Mulvihill. 1989. Multipoint linkage analysis in neurofibromatosis type I: An international collaboration. Am. J. Hum. Genet. 44: 6–12.PubMedGoogle Scholar
  22. 22.
    Morton, N.E. and V. Andrews. 1989. MAP, an expert system for multiple pairwise linkage analysis. Ann. Hum. Genet. 53: 263–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Lange, K., D. Weeks and M. Boehnke. 1988. Programs for pedigree analysis: MENDEL, FISHER, and dGENE. Genet. Epidemiol. 5: 471–72.Google Scholar
  24. 24.
    Dausset, J., H. Cann, D. Cohen, G.M. Lathrop, J.-M. Lalouel and R. White. 1990. Centre d’Etude du Polymorphisme Humain (CEPH): Collaborative genetic mapping of the human genome. Genomics 6: 575–77.PubMedCrossRefGoogle Scholar
  25. 25.
    NIH/CEPH Collaborative Mapping Group. 1992. Science 258: 67–86.CrossRefGoogle Scholar
  26. 26.
    Chumakov, I., P. Rigault, et al., 1992. Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359: 380–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Foote, S., D. Vollrath, A. Hilton and D.C. Page. 1992. The human Y chromosome: Overlapping DNA clones spanning the Euchromatic region. Science 258: 60–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Bellanné-Chantelot, C., B. Lacroix et al., 1992. Mapping the whole human genome by fingerprinting yeast artificial chromosomes. Cell 70: 1059–1068.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jacques S. Beckmann
    • 1
  1. 1.Centre d’Etude du Polymorphisme HumainParisFrance

Personalised recommendations