Towards an Immunotherapy for p185HER2 Overexpressing Tumors

  • Paul Carter
  • Maria L. Rodrigues
  • Gail D. Lewis
  • Irene Figari
  • M. Refaat Shalaby
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 353)


The protooncogene, HER2 (also known as c-erbB-2, neu, and HER-2 / neu) encodes a receptor tyrosine kinase, p185HER2 which is homologous to the EGF receptor (EGFr). HER2 was found to be amplified from 2 to 20-fold in up to ~ 30% of primary human breast cancers1. Furthermore, HER2 amplification was shown to be a strong prognosticator of decreased overall survival and overall time to relapse1 HER2 amplification and/or overexpression has subsequently been correlated with poor clinical prognosis in several additional malignant human diseases including: ovarian cancer2,3, endometrial cancer4,5, gastric cancer6 and adenocarcinoma of the lung7.


Epidermal Growth Factor Receptor Epidermal Growth Factor Receptor Mutant Human Tumor Cell Line Bispecific Antibody Large Granular Lymphocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A. and McGuire, W. L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., Levin, W. J., Stuart, S. G., Udove, J., Ullrich, A. and Press, M. F. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    Berchuck, A., Kamel, A., Whitaker, R., Kems, B., Olt, G., Kinney, R., Soper, J. T., Dodge, R., Clarke-Pearson, D. L., Marks, P., McKenzie, S., Yin, S. and Bast, R. C. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 50: 4087 (1990).PubMedGoogle Scholar
  4. 4.
    Borst, M. P., Baker, V. V., Dixon, D., Hatch, K. D., Shingleton, H. M. and Miller, D. M. Oncogene alterations in endometrial carcinoma. Gynecol Oncol 38: 364 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    Berchuck, A., Rodriguez, G., Kinney, R. B., Soper, J. T., Dodge, R. K., Clarke-Pearson, D. L. and Bast, R. C. Overexpression of HER-2 / neu in endometrial cancer is associated with advanced stage disease. Am. J. Obstet. Gynecol. 164: 15 (1991).PubMedGoogle Scholar
  6. 6.
    Yonemura, Y. Ninomiya, I., Yamaguchi, A., Fushida, S., Kimura, H., Ohoyama, S., Miyazaki, I., Endou, Y., Tanaka, M. and Sasaki, T. Evaluation of immunoreactivity for erbB-2 protein as a marker of poor short term prognosis in gastric cancer. Cancer Res. 51: 1034 (1991).PubMedGoogle Scholar
  7. 7.
    Kern, J. A., Schwartz, D. A., Nordberg, J. E., Weiner, D. B., Greene, M. I., Torney, L. and Robinson, R. A. pl85neu expression in human lung adenocarcinomas predicts shortened survival. Cancer Res. 50: 5184 (1990).PubMedGoogle Scholar
  8. 8.
    Myers, J. N., Drebin, J. A., Wada, T. and Greene, M. I. Biological effects of monoclonal antireceptor antibodies reactive with neu oncogene product, p185neu. Methods Enzymol. 198: 277 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    Lupu, R., Colomer, R., Zugmaier, G., Sarup, J., Shepard, M., Slamon, D. and Lippman, M. E. Direct interaction of a ligand for the erbB2 oncogene product with EGF receptor and p185erbB2. Science 249: 1552 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    Lupu, R., Colomer, R., Kannan, B. and Lippman, M. E. Characterization of a growth factor that binds exclusively to the erbB-2 receptor and induces cellular responses. Proc. Natl Acad. Sci. USA 89: 2287 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    Holmes, W. E., Sliwkowski, M. X., Akita, R. W., Henzel, W. J., Lee, J., Park, J. W., Yansura, D., Abadi, N., Raab, H., Lewis, G. D., Shepard, H. M., Kuang, W.-J., Wood, W. I., Goeddel, D. V. and Vandlen, R. L. Identification of heregulin, a specific activator or pl85erbB2. Science 256: 1205 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    Wen, D., Peles, E., Cupples, R., Suggs, S. V., Bacus, S. S., Luo, Y., Trail, G., Hu, S., Silbiger, S. M., Ben Levy, R., Koski, R. A., Lu, H. S. and Yarden, Y. Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69: 559 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    Peles, E., Bacus, S. S., Koski, R. A., Lu, H. S., Wen, D., Ogden, S. G., Ben Levy, R. and Yarden, Y. Isolation of the Neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69: 205 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    Fendly, B. M., Winget, M., Hudziak, R. M., Lipari, M. T., Napier, M. A. and Ullrich, A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 50: 1550 (1990).PubMedGoogle Scholar
  15. 15.
    Shepard, H. M, Lewis, G. D., Sarup, J. C, Fendly, B. M., Maneval, D., Mordenti, J., Figari, I., Kotts, C. E., Palladino Jr., M. A., Ullrich, A. and Slamon, D. Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J. Clin. Immunol. 11: 117 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    Park, J. W., Stagg, R., Lewis, G. D., Carter, P., Maneval, D., Slamon, D. J., Jaffe, H. and Shepard, H. M. Anti-pl85HER2 monoclonal antibodies: biological properties and potential for immunotherapy. In “Breast Cancer: Cellular and Molecular Biology”, Lippman, M. E. and Dickson, R. B., eds., Kluwer Academic Publishers, Boston, pp 193–211 (1991).Google Scholar
  17. 17.
    Sarup, J. C, Johnson, R. M., King, K. L., Fendly, B. M., Lipari, M. T., Napier, M.A., Ullrich, A. and Shepard, H. M. Characterization of an anti-pl85HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Reg. 1: 72 (1991).Google Scholar
  18. 18.
    Hudziak, R. M., Lewis, G. D., Winget, M., Fendly, B. M., Shepard, H. M., and Ullrich, A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell. Biol 9: 1165 (1989).PubMedGoogle Scholar
  19. 19.
    Miller, R. A., Oseroff, A. R., Stratte, P. T. and Levy, R. Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma. Blood 62: 988 (1983).PubMedGoogle Scholar
  20. 20.
    Schroff, R. W., Foon, K. A., Beatty, S. M., Oldham, R. K. and Morgan Jr., A. C. Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res. 45: 879 (1985).PubMedGoogle Scholar
  21. 21.
    Morrison, S. L., Johnson, M. J., Herzenberg, L. A. and Oi, V. T. Proc. Natl Acad. Sci USA 81: 6851 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    Boulianne, G. L., Hozumi, N. and Shulman, M. J. Production of functional chimaeric mouse/human antibody. Nature 312: 643 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    Brüggemann, M., Williams, G. T., Bindon, C. I., Clark, M. R., Walker, M. R., Jefferis, R., Waldmann, H. and Neuberger, M. S. Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J. Exp. Med. 166: 1351 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321: 522 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    Verhoeyen, M., Milstein, C. and Winter, G. Reshaping human antibodies: grafting an antilysozyme activity. Science 239: 1534 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    Riechmann, L., Clark, M., Waldmann, H., and Winter, G. Reshaping human antibodies for therapy. Nature 332: 323 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    Presta, L. G. Antibody engineering. Current Opinion Str. Biol. 2: 593 (1992).CrossRefGoogle Scholar
  28. 28.
    Queen, C, Schneider, W. P., Selick, H. E., Payne, P. W., Landolfi, N. F., Duncan, J. F., Avdalovic, N. M., Levitt, M., Junghans, R. P. and Waldmann, T. A. A humanized antibody that binds to the interleukin 2 receptor Proc. Natl. Acad. Sci. USA 86: 10029 (1989).PubMedCrossRefGoogle Scholar
  29. 29.
    McCafferty, J., Griffiths, A. D., Winter, G. and Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348: 552 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D. and Winter, G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    Carter, P., Presta, L., Gorman, C. M., Ridgway, J. B. B., Henner, D., Wong, W. L. T., Rowland, A. M., Kotts, C, Carver, M. E. and Shepard, H. M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 89: 4285 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    Lewis, G. D., Figari, I., Fendly, B., Wong, W. L., Carter, P., Gorman, C. and Shepard, H. M. Differential responses of human tumor cells lines to anti-p185HER2 monoclonal antibodies Cancer Immunol. Immunother. 37: 255 (1993).PubMedCrossRefGoogle Scholar
  33. 33.
    Herlyn, D., Powe, J., Ross, A. H., Herlyn, M. and Koprowski, H. Inhibition of human tumor growth by IgG2a monoclonal antibodies correlates with antibody density on tumor cells. J. Immunol. 134: 1300 (1985).PubMedGoogle Scholar
  34. 34.
    Press, M. F., Cordon-Cardo, C. and Slamon, D. J. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 5: 953 (1990).PubMedGoogle Scholar
  35. 35.
    Schlom, J. Antibodies in cancer therapy: basic principles of monoclonal antibodies, basic principles and applications. In “Biologic Therapy of Cancer”, De Vita Jr., V. T., Hellman, S. and Rosenberg, S. A., eds., J. B. Lippincott Company, Philadelphia, pp 464–481 (1991).Google Scholar
  36. 36.
    Shalaby, M. R., Shepard, H. M., Presta, L., Rodrigues, M. L., Beverley, P. C. L., Feldmann, M. and Carter, P. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. J. Exp. Med. 175: 217 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    Rodrigues, M. L., Shalaby, M. R., Werther, W., Presta, L. and Carter, P. Engineering a humanized bispecific F(ab’)2 fragment for improved binding to T cells. Internal J. Cancer Suppl. 7: 45 (1992).Google Scholar
  38. 38.
    Nishimura, T., Nakamura, Y., Tsukamoto, H., Takeuchi, Y., Tokuda, Y., Iwasawa, M., Yamamoto, T., Masuko, T., Hashimoto, Y. and Habu, S. Human c-erbB-2 proto-oncogene product as a target for bispecific-antibody-directed adoptive tumor immunotherapy. Int. J. Cancer 50: 800 (1992).PubMedCrossRefGoogle Scholar
  39. 39.
    Sugiyama, Y., Aihara, M., Shibamori, M., Deguchi, K., Imagawa, K., Kikuchi, M., Momota, H., Azuma, T., Okada, H., Alper, O., Hitomi, J. and Yamaguchi, K.In vitro anti-tumor activity of anti-c-erbB-2 x anti-CD3ε bifunctional monoclonal antibody. Jpn. J. Cancer Res. 83: 563 (1992).PubMedCrossRefGoogle Scholar
  40. 40.
    Ring, D. B., Shi, T., Hsieh-Ma, S. T., Reeder, J., Eaton, A. and Flatgaard, J. Targeted lysis of human breast cancer cells by human effector cells armed with bispecific antibody 2B1 (anti-c-erbB-2 / anti-Fcγ receptor III). In“Breast Epithelial Antigens”, Ceriani, R. L., ed., Plenum Press, New York, pp 91–104 (1991).CrossRefGoogle Scholar
  41. 41.
    Drebin, J. A., Link, V. C. and Greene, M. I. Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene 2: 273 (1988).PubMedGoogle Scholar
  42. 42.
    Kasprzyk, P. G., Song, S. U., Di Fiore, P. P. and King, C. R. Therapy of an animal model of human gastric cancer using a combination of anti-erbB-2 monoclonal antibodies. Cancer Res. 52: 2771 (1992).PubMedGoogle Scholar
  43. 43.
    Hancock, M. C, Langton, B. C, Chan, T., Toy, P., Monahan, J. J., Mischak, R. P. and Shawver, L. K. A monoclonal antibody against the c-erbB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res. 51: 4575 (1991).PubMedGoogle Scholar
  44. 44.
    Batra J. K., Kasprzyk, P. G., Bird, R. E., Pastan, I. and King, C. R. Recombinant anti-erbB2 immunotoxins containing Pseudomonasexotoxin. Proc. Natl. Acad. Sci USA 89: 5867 (1992).PubMedCrossRefGoogle Scholar
  45. 45.
    Nelson, H. Targeted cellular immunotherapy with bifunctional antibodies. Cancer Cells 3: 163 (1991).PubMedGoogle Scholar
  46. 46.
    Segal, D. M., Qian, J.-H., Mezzanzanica, D., Garrido, M. A., Titus, J. A., Andrew, S. M., George, A. J. T., Jost, C. R., Perez, P. and Wunderlich, J. R. Targeting of anti-tumor responses with bispecific antibodies. Immunobiol. 185: 390 (1992).CrossRefGoogle Scholar
  47. 47.
    Nitta, T., Sato, K., Yagita, H., Okumura, K. and Ishii, S. Preliminary trial of specific targeting therapy against malignant glioma. Lancet 335: 368 (1990).PubMedCrossRefGoogle Scholar
  48. 48.
    Carter, P., Kelley, R. F., Rodrigues, M. L., Snedecor, B., Covarrubias, M, Velligan, M. D., Wong, W. L. T., Rowland, A. M., Kotts, C. E., Carver, M. E., Yang, M., Bourell, J. H., Shepard, H. M. and Henner, D. High level Escherichia coli expression and production of a bivalent humanized antibody fragment. Bio/Tech. 10: 163 (1992).CrossRefGoogle Scholar
  49. 49.
    Brennan, M., Davison, P. F. and Paulus, H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229: 81 (1985).PubMedCrossRefGoogle Scholar
  50. 50.
    Glennie, M. J., McBride, H. M., Worth, A. T. and Stevenson, G. T. Preparation and performance of bispecific F(ab’γ)2 antibody containing thioether-linked Fab’γ fragments. J. Immunol. 139: 2367 (1987).PubMedGoogle Scholar
  51. 51.
    Aboud-Pirak, E., Hurwitz, E., Pirak, M. E., Bellot, F., Schlessinger, J. and Sela, M. Efficacy of antibodies to epidermal growth factor receptor against KB carcinoma in vitro and in nude mice. J. Natl. Cancer Inst. 21: 1605 (1988).CrossRefGoogle Scholar
  52. 52.
    Goldman, R., Ben Levy, R., Peles, E. and Yarden Y. Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. Biochem. 29: 11024 (1990).CrossRefGoogle Scholar
  53. 53.
    Spivak-Kroizman, T., Rotin, D., Pinchasi, D., Ullrich, A., Schlessinger, J. and Lax, I. Heterodimerization of c-erbB2 with different epidermal growth factor receptor mutants elicits simulatory or inhibitory responses. J. Biol. Chem. 267: 8056 (1992).PubMedGoogle Scholar
  54. 54.
    Wada, T., Myers, J. N., Kokai, Y., Brown, V. L, Hamuro, J., LeVea, C. M. and Greene, M. I. Anti-receptor antibodies reverse the phenotype of cells transformed by two interacting proto-oncogene encoded receptor proteins. Oncogene 5: 489 (1990).PubMedGoogle Scholar
  55. 55.
    Allred, D. C, Tandon, A. K., Clark, G. M. and McGuire, W. L. Expression and prognostic significance of the HER-2/NEU oncogene during the evolutionary progression of human breast cancer. In “Breast Epithelial Antigens”, Ceriani, R. L., ed., Plenum Press, New York, pp 69–82 (1991).CrossRefGoogle Scholar
  56. 56.
    Waldmann, T. A. Monoclonal antibodies in diagnosis and therapy. Science 252: 1657 (1991).PubMedCrossRefGoogle Scholar
  57. 57.
    Marks, J. D., Hoogenboom, H. R., Griffiths, A. D. and Winter, G. Molecular evolution of proteins on filamentous phage. Mimicking the strategy of the immune system. J. Biol. Chem. 267: 16007 (1992).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Paul Carter
    • 1
  • Maria L. Rodrigues
    • 1
  • Gail D. Lewis
    • 2
  • Irene Figari
    • 3
  • M. Refaat Shalaby
    • 4
  1. 1.Departments of Protein EngineeringGenentech IncSouth San FranciscoUSA
  2. 2.Departments of Cell BiologyGenentech IncSouth San FranciscoUSA
  3. 3.Departments of EndocrinologyGenentech IncSouth San FranciscoUSA
  4. 4.Departments of Medicinal and Analytical ChemistryGenentech IncSouth San FranciscoUSA

Personalised recommendations