Advertisement

The Motile Behavior of Amoebae in the Aggregation Wave in Dictyostelium Discoideum

  • David R. Soll
  • Deborah Wessels
  • Andrew Sylwester
Part of the NATO ASI Series book series (NSSA, volume 259)

Abstract

Pattern develops during the aggregation process in the cellular slime mold Dictyostelium discoideum, and although aggregation appears to represent a more dynamic process than the genesis of a more static morphogenetic field, it shares several of the same basic characteristics. As hypothesized for some forms of positional information (Wolpert 1971), aggregation information is in the form of a signal emanating from a source and in this case is amplified through a relay system between cells. Cells respond individually to the signal with directional movement towards the source (Alcantara & Monk 1974), which is the aggregation center. Because of the ease of experimental manipulation, gene cloning, and targeted mutagenesis, the process of signal genesis, signal transduction, and the motile response in D. discoideum is rapidly being elucidated and warrants careful scrutiny by researchers in the field of pattern formation. In this mini-review, we will focus on the behavioral response of cells to the naturally propagated cAMP wave. We will consider a wave paradox which has been explained by a temporal mechanism for Chemotaxis (Varnum et al. 1985; Soll 1990), and then describe methods for assessing the role of particular cytoskeletal elements in the motile response to the natural wave.

Keywords

Receptor Occupancy Dictyostelium Discoideum Natural Wave Aggregation Center Cellular Slime Mold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcantara, F., & Monk, M. 1974. Signal propagation in the cellular slime mould Dictyostelium discoideum. J. Gen. Micro., 85, 321–324.CrossRefGoogle Scholar
  2. Bonner, J. 1947. Evidence for the formation of cell aggregates by Chemotaxis in the development of the slime mould Dictyostelium discoideum. J. Exp. Zool., 106, 1–26.PubMedCrossRefGoogle Scholar
  3. Boyd, A., & Simon, M. 1982. Bacterial Chemotaxis. Ann. Rev. Physiol, 44, 501–517.CrossRefGoogle Scholar
  4. Brown, P., & Berg, H. 1974. Temporal stimulation of Chemotaxis in Escherichia coli. Proc. Natl. Acad. Sci.: (USA), 71, 1388–1392.CrossRefGoogle Scholar
  5. Cox, D., Condeelis, J., Wessels, D., Soll, D., Kern, H., & Knecht, D. 1992. Targeted disruption of the ABP-120 gene leads to cells with altered motility. J. Cell Biol., 116, 943–955.PubMedCrossRefGoogle Scholar
  6. De Lozanne, A., & Spudich, J. A. 1979. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science, 236, 1086–1091.CrossRefGoogle Scholar
  7. Devreotes, P. N., & Steck, T. 1979. Cyclic AMP relay in Dictyostelium discoideum. II. Requirements for the initiation and termination of the response. J. Cell Biol., 80, 300–3PubMedCrossRefGoogle Scholar
  8. Devreotes, P. N., & Zigmond, S. H. 1988. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Ann. Rev. Cell Biol., 4, 649–686.PubMedCrossRefGoogle Scholar
  9. Devreotes, P. N., Potel, M., & MacKay, S. 1983. Quantitative analysis of cyclic AMP waves mediating aggregation in Dictyostelium discoideum. Dev. Biol., 96, 405–415.PubMedCrossRefGoogle Scholar
  10. Devreotes, P. N., Fontana, D., Klein, P., Scherring, J., & Theibert, A. 1987. Transmembrane signaling in Dictyostelium. Methods Cell Biol., 28, 299–331.PubMedCrossRefGoogle Scholar
  11. Durston, A. 1974. Pacemaker activity during aggregation in Dictyostelium discoideum. Dev. Biol., 37, 225–235.PubMedCrossRefGoogle Scholar
  12. Fisher, P., Merkl, R., & Gerisch, G. 1989. Quantitative analysis of cell motility and Chemotaxis in Dictyostelium. J. Cell Biol., 92, 807–821.Google Scholar
  13. Futrelle, R., Traut, J., & Mckee, W. 1982. Cell behavior in Dictyostelium discoideum: preaggregation response to localized cAMP pulses. J. Cell Biol., 92, 807–821.PubMedCrossRefGoogle Scholar
  14. Gerisch, G. 1968. Cell aggregation and differentiation in Dictyostelium discoideum. Curr. Top. Devl. Biol., 3, 157–197.CrossRefGoogle Scholar
  15. Gerisch, G., & Keller, H. 1981. Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMET-Leu-Phe. J. Cell. Sci., 52, 1–10.PubMedGoogle Scholar
  16. Gross, J., Peacey, M., & Trevan, D. 1976. Signal emission and signal propagation during early aggregation in Dictyostelium discoideum. J. Cell Sci., 22, 645–656.PubMedGoogle Scholar
  17. Konijn, T., Barkley, D., Chang, Y., & Bonner, J. 1968. Cyclic AMP: a naturally occurring acrasin in the cellular slime molds. Am. Nat., 102, 225–233.CrossRefGoogle Scholar
  18. Loomis, W. F. 1982. The Development of Dictyostelium discoideum. New York: Academic Press.Google Scholar
  19. Malchow, D., Nagele, B., Schwarz, H., & Gerisch, G. 1972. Membrane-bound cyclic AMP phosphodiesterase in chemotactically responding cells of Dictyostelium discoideum. Eur. J. Biochem, 28, 136–142.PubMedCrossRefGoogle Scholar
  20. Murray, J., Vawter-Hugart, H., & Soll, D. R. 1992. Three-dimensional motility cycle in leukocytes. Cell Motil Cytoskel, 22, 211–223.CrossRefGoogle Scholar
  21. Newell, P. C., & Europe-Finner, G. N. 1990. Signal transduction for Chemotaxis in Dictyostelium amoebae. Sem. Cell Biol., 1(2), 105–114.Google Scholar
  22. Shaffer, B. M. 1957. Aspects of aggregation in the cellular slime molds. 1. orientation and Chemotaxis. Nature, 91, 19–35.Google Scholar
  23. Shaffer, B. M. 1975. Secretion of cAMP-induced by cAMP in the cellular slime mold Dictyostelium discoideum. Nature, 255, 549–552.PubMedCrossRefGoogle Scholar
  24. Silverman, M., & Simon, M. 1974. Flagellar rotation and the mechanism of bacterial motility. Nature, 249, 73–74.PubMedCrossRefGoogle Scholar
  25. Soll, D. R. 1979. Timers in developing systems. Science, 203, 841–849.PubMedCrossRefGoogle Scholar
  26. Soll, D. R. 1988. DMS, a computer-assisted system for quantitating motility, the dynamics of cytoplasmic flow, and pseudopod formation: Its applicating to Dictyostelium Chemotaxis. Cell Motil. Cytoskel., 10, 91–106.CrossRefGoogle Scholar
  27. Soll, D. R. 1990. Behavioral studies into the mechanism of eukaryotic Chemotaxis. J. Chem. Ecol., 16, 133–150.CrossRefGoogle Scholar
  28. Soll, D. R., Voss, E., & Wessels, D. 1987. Development and application of the “Dynamic Morphology System” for the analysis of moving amoebae. Proc. SPIE, 832, 821–830.Google Scholar
  29. Soll, D. R., Voss, E., Varnum-Finney, B., & Wessels, D. 1988. The “Dynamic Morphology System”: A method for quantitating changes in shape, pseudopod formation and motion in normal and mutant amoebae of Dictyostelium discoideum. J. Cell Biochem, 37, 177–192.PubMedCrossRefGoogle Scholar
  30. Soll, D. R., Vawter-Hugart, H., & Voss, E. 1993. “3D-DIAS”: A computer-assisted method for quantitating the three-dimensional motion parameters of motile cells. (In preparation).Google Scholar
  31. Swanson, J., & Taylor, D. L. 1982. Local and spatially coordinated movements in Dictyostelium discoideum amoebae during Chemotaxis. Cell, 28, 225–232.PubMedCrossRefGoogle Scholar
  32. Sylwester, A. W., Wessels, D., & Soll, D. R. 1992. Myosin-IA cells among aggregating wild-type cells exhibit aberrant chemotactic behaviors. (In preparation).Google Scholar
  33. Titus, M., Wessels, D., Spudich, J., & Soll, D. R. 1992. The unconventional myosin encoded by the myoA gene plays a role in Dictyostelium motility.Molec. Biol Cell. (In press).Google Scholar
  34. Tomchik, K., & Devreotes, P. 1981. cAMP waves in Dictyostelium discoideum: Demonstration by a novel isotope dilution fluorography technique. Science, 212, 433–446.CrossRefGoogle Scholar
  35. Varnum, B., Edwards, E., & Soll, D. 1985. Dictyostelium amoebae alter motility differently in response to increasing versus decreasing temporal gradients of cAMP. J. Cell Biol., 101, 1–5.PubMedCrossRefGoogle Scholar
  36. Varnum-Finney, B., Edwards, K., Voss, E., & Soll, D. 1987a. Amoebae of Dictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: evidence for a temporal mechanism in ameboid Chemotaxis. Cell Motil. Cytoskel, 8, 7–17.CrossRefGoogle Scholar
  37. Varnum-Finney, B., Voss, E., & Soll, D. 1987b. Frequency and orientation of pseudopod formation of Dictyostelium discoideum amoebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism. J. Cell Motil. Cytoskel, 8 (18–26).CrossRefGoogle Scholar
  38. Wessels, D., & Soll, D. R. 1990. Myosin II heavy chain null mutant of Dictyostelium discoideum exhibits defective intracellular particle movement. J. Cell Biol., 111, 1137–1148.PubMedCrossRefGoogle Scholar
  39. Wessels, D., Soll, D. R., Knecht, D., Loomis, W. F., DeLozanne, A., & Spudich, J. A. 1988. Cell motility and Chemotaxis in Dictyostelium amoebae lacking myosin heavy chain. Dev. Biol., 128, 164–177.PubMedCrossRefGoogle Scholar
  40. Wessels, D., Schroeder, N., Voss, E., Hall, A., Condeelis, J., & Soll, D. R. 1989. cAMP-mediated inhibition of intracellular particle movement and actin reorganization in Dictyostelium. J. Cell Biol., 109, 2841–2851.PubMedCrossRefGoogle Scholar
  41. Wessels, D., Murray, J., Jung, G., J.A. Hammer, III, & Soll, D. R. 1991. Myosin IB null mutants of Dictyostelium exhibit abnormalities in motility. Cell Motil. Cytoskel., 20, 301–315.CrossRefGoogle Scholar
  42. Wessels, D., Murray, J., & Soll, D. R. 1992. Behavior of Dictyostelium amoebae is regulated primarily by the temporal dynamic of the natural cAMP wave. Cell Motil. Cytoskel, 23, 145–156.CrossRefGoogle Scholar
  43. Wessels, D., Murray, J., Sylwester, A., Vawter-Hugart, H., & Soll, D. R. 1993. The three dimensional dynamics of pseudopod formation and turning during the motility cycle of Dictyostelium. (Submitted).Google Scholar
  44. Wolpert, L. 1971. Positional information and pattern formation. Curr. Top. Dev. Biol., 6, 183–224.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • David R. Soll
    • 1
  • Deborah Wessels
    • 1
  • Andrew Sylwester
    • 1
  1. 1.Department of Biological SciencesUniversity of IowaIowa CityUSA

Personalised recommendations