Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 259))

Abstract

Various types of cells use changes in intracellular calcium triggered by hormones, neurotransmitters or growth factors as a second messenger to trigger a variety of intracellular responses, including contraction, secretion, growth and differentiation. One of the earliest experiments that revealed the complexity of the calcium response is that due to Woods et al.(1986), who studied the response of hepatocytes to vasopressin, a hormone that mobilizes intracellular calcium. They found that over the range of 200 nM to 1 μM in the hormone concentration, stimuli evoke repetitive spikes in the intracellular calcium concentration, rather than simply elevating the level of calcium. Moreover, they found that as the hormone concentration was raised, the frequency of spiking increased, but the amplitude remained nearly constant. Thus the continuously-graded (analog) extracellular hormone signal was converted into a frequency-encoded digital signal (the number of calcium spikes). Similar dynamic behavior has been found in a large number of cell types since then, and has lead to the suggestion that calcium spiking and frequency encoding must have a physiological role. Since high calcium levels are cytotoxic, it is necessary to maintain a low average concentration of calcium, but since calcium frequently serves primarily as a trigger for other processes, a transient elevation above a low mean concentration suffices for this purpose. Moreover, using a large transient increase as the trigger permits the use of a sharper threshold for response, and hence better noise discrimination. Other possible advantages are suggested by Meyer & Stryer (1991), but to date there is little hard evidence that the spiking plays an essential physiological role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. 1989. Molecular biology of the cell, second edn. New York: Garland Publishing, Inc.

    Google Scholar 

  • Alexander, J. C, Doedel, E. J., & Othmer, H. G. 1990. On the resonance structure in a forced excitable system. SIAM J. Appl. Math., 50(5), 1373–1418.

    Article  Google Scholar 

  • Bazotte, R. B., Pereira, B., Higham, V. Shoshan-Barmatz S., & Kraus-Friedmann, N. 1991. Effects of ryanodine on calcium sequestration in the rat liver. Biochemical Pharmocology, 42(9), 1799–1803.

    Article  CAS  Google Scholar 

  • Berridge, M. J. 1990. Inositol 1,4,5-trisphosphate-induced calcium mobilization is localized in Xenopus oocytes. Proc. Roy. Soc. B, 238, 235–343.

    Article  Google Scholar 

  • Bezprozvanny, I., Watras, J., & Ehrlich, B. E. 1991. Bell-shaped calcium-response curves of Ins(1,4,5)P3-and calcium-gated channels from endoplasmic recticulum of cerebellum. Nature, 351, 751–754.

    Article  PubMed  CAS  Google Scholar 

  • Boitano, Scott, Dirksen, Ellen R., & Sanderson, Michael J. 1992. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science, 258(Oct.), 292–295.

    Article  PubMed  CAS  Google Scholar 

  • Brundage, Rodney A., Fogarty, Kevin E., Tuft, Richard A., & Fay, Fredric S. 1991. Calcium gradients underlying polarization and Chemotaxis of eosinophils. Science, 254(Nov.), 703–706.

    Article  PubMed  CAS  Google Scholar 

  • Cobbold, P. H., Sanchez-Bueno, A., & Dixon, C. J. 1991. The hepatocyte calcium oscillator. Cell Calcium, 12, 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Cuthbertson, K. S. R., & Chay, T. R. 1991. Modelling receptor-controlled intracellular calcium oscillations. Cell Calcium, 12, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • De Young, G., & Keizer, J. 1992. A single-pool inositol 1,4,5-trisphophate-receptor-based model for agonist-stimulated oscillations in Ca +2 concentration. Proc. Nat. Acad. Sci., 89, 9895–9899.

    Article  PubMed  Google Scholar 

  • Delisle, S. 1991. The four dimensions of calcium signalling in Xenopusoocytes. Cell Calcium, 12, 217–227.

    Article  PubMed  CAS  Google Scholar 

  • DeLisle, S., Krause, K. H., Denning, G., Potter, B. V. L., & Welsh, M. J. 1990. Effect of inositol trisphosphate and calcium on oscillating elevations of intracellular calcium in Xenopusoocytes. J. Biol. Chem., 265, 11726–11730.

    PubMed  CAS  Google Scholar 

  • Doedel, E. 1986. AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Tech. rept. California Institute of Technology.

    Google Scholar 

  • Dupont, G., Berridge, M. J., & Goldbeter, A. 1991. Signal-induced Ca2+ oscillations: Properties of a model based on Ca2+-induced Ca2+ release. Cell Calcium, 12, 73–85.

    Article  PubMed  CAS  Google Scholar 

  • Finch, E. A., Turner, T. J., & Goldin, S. M. 1991. Calcium as acoagonist of inositol 1,4,5-triphosphate-induced calcium release. Science, 252, 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Gilkey, J. C, Jaffe, L. F, Ridgeway, E. B., & Reynolds, G. T. 1978. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J. Cell Biol., 76, 448–466.

    Article  PubMed  CAS  Google Scholar 

  • Girard, S., Luckhoff, A., Lechleiter, J., Sneyd, J., & Clapham, D. 1992. Two-dimensional model of calcium waves reproduces the patterns observed Xenopusoocytes. Biophys. J., 61, 509–517.

    Article  PubMed  CAS  Google Scholar 

  • Goldbeter, A., Dupont, G., & Berridge, M. J. 1990. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl Acad. Sci. USA, 87, 1461–1465.

    Article  PubMed  CAS  Google Scholar 

  • Harootunian, A. T., Kao, J. P. Y., Paranjape, S., & Tsien, R. Y. 1991. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science, 251, 75–78.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, S. K., Rice, H. L., & Williamson, J. R. 1989. The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fraction. Biochem. J., 258, 261–265.

    PubMed  CAS  Google Scholar 

  • Keizer, J., & De Young, G. W. 1992. Two roles for Ca2+ in agonist stimulated Ca2+ oscillations. Biophys. J., pp. 649-660.

    Google Scholar 

  • Kuba, K., & Takeshita., S. 1981. Simulation of intracellular Ca2+ oscillations in a sympathetic neurone. J. of Theor. Biol., 93, 1009–1031.

    Article  CAS  Google Scholar 

  • Lechleiter, J., & Clapham, D. 1992. Molecular mechanisms of intracellular calcium excitability in X. laevisoocytes. Cell, 69, 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Lechleiter, J., Girard, S., Peralta, E., & Clapham, D. 1991. Spiral calcium wave propagation and annihilation in Xenopus laevisoocytes. Science, 252, 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Lupu-Meiri, M., Shapira, H., & Oron, Y. 1988. Hemispheric asymmetry of rapid chloride responses to inositol trisphosphate and calcium in Xenopusoocytes. FEBS Letts., 240, 83–87.

    Article  CAS  Google Scholar 

  • Meyer, T., & Stryer, L. Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc. Nat. Acad. Sci. USA.

    Google Scholar 

  • Meyer, T., & Stryer, L. 1988. Molecular model for receptor-stimulated calcium spiking. Proc. Natl. Acad. Sci. USA, 85, 5051–5055.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, Tobias. 1991. Cell signaling by second messenger waves. Cell, 64, 675–678.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, Tobias, & Stryer, Lubert. 1991. Calcium spiking. Ann. Rev. Biophys. Biophys. Chem., 20, 153–174.

    Article  CAS  Google Scholar 

  • Miyazaki, S., Yuzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S., & hiba, K. Mikos. 1992. Block of Ca 2+ wave and Ca 2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science, 257, 251–255.

    Article  PubMed  CAS  Google Scholar 

  • Nuccitelli, R. 1991. How do sperm activate eggs? Curr. Top. Dev. Biol., 25, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Othmer, H. G. 1991. The dynamics of forced excitable systems. In Nonlinear Wave Processes in Excitable Media, Holden, A. V., Markus, M., & Othmer, Hans G. (eds), pp. 213-232. NATO, Plenum Press.

    Google Scholar 

  • Parker, L, & Ivorra, I. 1990. Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: A possible mechanism for oscillatory release of Ca2+. Proc. Natl. Acad. Sci USA, 87, 260–264.

    Article  PubMed  CAS  Google Scholar 

  • R. Jacob, J. E. Merritt, T. J. Hallam, & Rink, T. J. 1988. Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature, 335(Sept.), 40–45.

    Article  PubMed  CAS  Google Scholar 

  • Rooney, Thomas A., Sass, Ellen J., & Thomas, Andrew P. 1989. Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. J. Biol. Chem., 264(29), 17131–17141.

    PubMed  CAS  Google Scholar 

  • Somogyi, R., & Stucki, J. W. 1991. Hormone-induced calcium oscillations in liver cells can be explained by a simple one pool model. J. Biol Chem., 266(17), 11068–11077.

    PubMed  CAS  Google Scholar 

  • Swann, Karl, & Whitaker, Michael. 1986. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J. Cell Biol., 103(6 Pt. 1), 2333–2342.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, A. P., Renard, D. C, & Rooney, T. A. 1991. Spatial and temporal organization of calcium signalling in hepatocytes. Cell Calcium, 12, 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., Alderson-Lang, B. H., & Nickols, G. A. 1990. Regulation of inositol 1,4,5-triphosphate-induced Ca 2+ release. I. effect of Mg 2+. Am. J. Physiol, 258, C1077–C1085.

    PubMed  CAS  Google Scholar 

  • Wakui, M., & Petersen, O. H. 1990. Cytoplasmic Ca2+ oscillations evoked by acetylcholine or intracellular infusion of inositol trisphosphate or Ca2+ can be inhibited by internal Ca2+. FEBS Lett., 263, 206–208.

    Article  PubMed  CAS  Google Scholar 

  • Wakui, M., Potter, B. V. L., & Petersen, O. H. 1989. Pulsatile intercellular calcium release does not depend on fluctuations in inositol trisphosphate concentrations. Nature,339, 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Watras, J., Bezprozvanny, I, & Ehrlich, B. E. 1991. Inositol 1,4,5-trisphoshate-gated channels in cerebellum: Presence of multiple conductance states. J. Neuroscience, 11(10), 3239–3245.

    CAS  Google Scholar 

  • Wong, Alan Y. K., Fabiato, Alexandre, & Bassingthwaigthe, J. B. 1992. Model of calcium-induced calcium release mechanism in cardiac cells. Bulletin of Mathematical Biology, 54(1), 95–116.

    Google Scholar 

  • Woods, N. M., Cuthberson, K. S. R., & Cobbold, P.H. 1986. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature, 319,600–602.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Hong, Loessberg, Peggy A., Sachs, George, & Muallem, Shmuel. 1990. Regulation of intracellular Ca2+ oscillation in AR42J cells. J. Biol. Chem., 265(34), 20856–20862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Othmer, H.G., Tang, Y. (1993). Oscillations and Waves in a Model of InsP3-Controlled Calcium Dynamics. In: Othmer, H.G., Maini, P.K., Murray, J.D. (eds) Experimental and Theoretical Advances in Biological Pattern Formation. NATO ASI Series, vol 259. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2433-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2433-5_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6033-9

  • Online ISBN: 978-1-4615-2433-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics