Advertisement

Patterns Formed Through Cell-Cell Interactions: Spontaneous Selection of Dominant Directions

  • Leah Edelstein-Keshet
Part of the NATO ASI Series book series (NSSA, volume 259)

Abstract

This paper presents an example of patterns formed through the direct interactions of cells. After a brief review of classical ideas from pattern formation, we introduce the idea that the selection of a dominant direction in an initially isotropic medium is analogous to a type of pattern formation, not in physical space, but rather in angle-space. The pattern forms on a unit circle, i. e. on a range of angles 0 < θ < 2π. It is shown that as a result of cell-cell interactions, uniform angular distributions of cells are unstable and that peaks in these distributions form spontaneously. These peaks represent dominant directions that arise in the cell population as a result of clustering and alignment of cells with one another. (See Figure 19.1). The paper will concentrate on alignment of populations of fibroblasts in vitro, and on analysis of typical equations that arise in modelling angular distributions. Applications of similar models to formation of preferred orientations in populations of organisms and in macromolecular networks will be discussed.

Keywords

Angular Distribution Pattern Formation Lateral Inhibition Free Cell Parallel Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bard, J. B. L. 1981. A model for generating aspects of zebra and other mammalian coat patterns. J. Theor Biol., 93, 363–385.PubMedCrossRefGoogle Scholar
  2. Bard, J. B. L., & French, V. 1984. Butterfly wing patterns: how good a determining mechanism is the simple diffusion of a single morphogen? J. Embryol. exp. Morph., 84, 255–274.PubMedGoogle Scholar
  3. Civelekoglu, G. 1992. Actin alignment mediated by actin binding proteins. Ph.D. thesis, UBC, Vancouver.Google Scholar
  4. Edelstein-Keshet, L. 1992. Trail following as an adaptable mechanism for population behaviour. In 3D Animal Aggregations. (Submitted).Google Scholar
  5. Edelstein-Keshet, L., & Ermentrout, G. B. 1989. Models for branching networks in two dimensions. SIAMJ. Appl. Math., 49(4), 1136–1157.CrossRefGoogle Scholar
  6. Edelstein-Keshet, L., & Ermentrout, G. B. 1990. Models for contact-mediated pattern formation: cells that form parallel arrays. J. Math. Biol., 29, 33–58.PubMedCrossRefGoogle Scholar
  7. Ermentrout, G. B., & Cowan, J. D. 1979. A mathematical theory of visual hallucination patterns. Biol. Cybernet, 34, 137–150.CrossRefGoogle Scholar
  8. Ermentrout, G. B., Campbell, J., & Oster, G. 1986. A model for shell patterns based on neural activity. Veliger, 28, 369–388.Google Scholar
  9. Gierer, A., & Meinhardt, H. 1972. A theory of biological pattern formation. Kybernetik, 12, 30–39.PubMedCrossRefGoogle Scholar
  10. Harrison, L. G. 1987. What is the status of reaction-diffusion theory thirty four years after Turing? J. Theor. Biol., 125, 369–384.PubMedCrossRefGoogle Scholar
  11. Lengyel, I., & Epstein, I. R. 1992. A chemical approach to designing Turing patterns in reaction diffusion systems. Proc. Natl. Acad. Sci., 89, 3977–3979.PubMedCrossRefGoogle Scholar
  12. Levin, S. A., & Segel, L. A. 1985. Pattern generation in space and aspect. SIAM Review, 27(1), 45–67.CrossRefGoogle Scholar
  13. Meinhardt, H. 1978. Models for the ontogenetic development of higher organisms. Rev. Physiol. Biochem. Pharmacol, 80, 47–104.PubMedGoogle Scholar
  14. Meinhardt, H. 1982. Models of biological pattern formation. New York: Academic Press.Google Scholar
  15. Murray, J. D. 1981a. On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Phil Trans. Roy. Soc. (London), B295, 473–496.Google Scholar
  16. Murray, J. D. 1981b. A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol., 88, 161–199.CrossRefGoogle Scholar
  17. Murray, J. D. 1982. Parameter space for Turing instability in reaction-diffusion mechanisms: a comparison of models. J. Theor. Biol., 98, 143–163.PubMedCrossRefGoogle Scholar
  18. Murray, J. D. 1988. How the leopard gets its spots. Sci. Amer, 258(3), 80–87.CrossRefGoogle Scholar
  19. Murray, J. D. 1989. Mathematical biology. New York: Springer Verlag.Google Scholar
  20. Murray, J. D., & Oster, G. F. 1984. Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol., 19, 265–279.PubMedCrossRefGoogle Scholar
  21. Murray, J. D., Oster, G. F., & Harris, A. K. 1983. A mechanical model for mesenchymal morphogenesis. J. Math. Biol., 17, 125–129.PubMedCrossRefGoogle Scholar
  22. Odell, G. M., Oster, G., Alberch, P., & Burnside, B. 1981. The mechanical basis of morphogenesis, I. epithelial folding and invagination. Dev. Biol., 85, 446–462.PubMedCrossRefGoogle Scholar
  23. Oster, G. F., & Murray, J. D. 1989. Pattern formation models and developmental constraints. J. exp. Zool., 251, 186–202.PubMedCrossRefGoogle Scholar
  24. Oster, G. F., Murray, J. D., & Harris, A. K. 1983. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. exp. Morph., 78, 83–125.PubMedGoogle Scholar
  25. Othmer, H. G. 1969. Interactions of reaction and diffusion in open systems. Ph.D. thesis, Chemical Engineering Dept., Univ. of Minnesota.Google Scholar
  26. Ouyang, Q., & Swinney, H. L. 1991. Transition from a uniform state to hexagonal and striped Turing patterns. Nature, 352, 610–612.CrossRefGoogle Scholar
  27. Raignier, A., & van Boven, J. 1955. étude taxonomique, biologique, et biometrique des Dorylusdu sous-genre Anomma(hymenoptera: Formicidae) Annals du Musee Royal du Congo Belge n.s. 4. sciences zoologiques, 2, 1–359.Google Scholar
  28. Swindale, N. V. 1980. A model for the formation of ocular dominance stripes. Proc. R. Soc. Lond., B208, 243–264.CrossRefGoogle Scholar
  29. Turing, A. M. 1952. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond., B237, 37–72.Google Scholar
  30. Weliky, M., & Oster, G. 1990. The mechanical basis of cell rearrangement I epithelial morphogenesis during fundulus epiboly. Development, 109, 373–386.PubMedGoogle Scholar
  31. Winfree, A. T. 1991. Crystals from dreams. Nature, 352, 568–569.CrossRefGoogle Scholar
  32. Young, D. A. 1984. A local activator-inhibitor model of vertebrate skin patterns. Math. Biosci., 72, 51–58.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Leah Edelstein-Keshet
    • 1
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations