Control of G1 Progression by Mammalian D-Type Cyclins

  • Charles J. Sherr
  • Hitoshi Matsushime
  • Jun-ya Kato
  • Dawn E. Quelle
  • Martine F. Roussel
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Progression through the first gap phase (Gi) of the mammalian cell cycle is regulated by growth factors, but once cells commit to replicate their cellular DNA, they can undergo mitosis even if deprived of growth factors during ensuing cell cycle inter-vals.1 Recently isolated mammalian cyclins, including cyclins D1, D2, D3, and E, 2–6 appear likely to play central roles in integrating growth factor-induced signals with the cell cycle clock, thereby driving cells into S phase. To date, the hypothesis that D-type cyclins and cyclin E function to govern G1 transitions has rested largely on circumstantial evidence, but recent data now indicate that their activities are rate limiting for G1 progression and required for the entry of cells into the DNA synthetic (S) phase of the cell cycle.


Human Cyclin Retinoblastoma Gene Product LXCXE Motif Centrocytic Lymphoma Affect Cell Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.B. Pardee, GI events and regulation of cell proliferation, Science 246: 603 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    T. Motokura, T. Bloom, H.G. Kim, H. Juppner, J.V. Ruderman, H.M. Kronenberg, and A. Arnold, A novel cyclin encoded by a bcll-linked candidate oncogene, Nature (London) 350: 512 (1991).CrossRefGoogle Scholar
  3. 3.
    H. Matsushime, M.F. Roussel, R.A. Ashmun, and C.J. Sherr, Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle, Cell 65: 701 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. Xiong, T. Connolly, B. Futcher, and D. Beach, Human D-type cyclin, Cell 65: 691 (1991).PubMedCrossRefGoogle Scholar
  5. 5.
    D.J. Lew, V. Dulic, and S.I. Reed, Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast, Cell 66: 1197 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Koff, F. Cross, A. Fisher, J. Schumacher, K. Leguellec, M. Philippe, and J.M. Roberts, Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family, Cell 66: 1217 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    L.H. Hartwell, Saccharomyces cerevesiae cell cycle, Bact Rev 38: 164 (1974).PubMedGoogle Scholar
  8. 8.
    S.I. Reed, G1-specific cyclins: in search of an S-phase promoting factor, Trends Genet 7: 95 (1991).PubMedGoogle Scholar
  9. 9.
    H.E. Richardson, C. Wittenberg, F. Cross, and S.I. Reed, An essential G1 function for cyclin-like proteins in yeast, Cell 59: 1127 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    P.E. Sudbery, A.R. Goodey, and B.L.A. Carter, Genes which control cell division in the yeast Saccharomyces cerevisiae, Nature 288: 401 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Nash, G. Tokiwa, S. Mand, K. Erickson, and A.B. Futcher, The WH1+ gene of Saccharomyces cerevesiae tethers cell division to cell size and is a cyclin homo-log, EMBO J 7: 4335 (1988).PubMedGoogle Scholar
  12. 12.
    F. Cross, DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevesiae, Mol Cell Biol 8: 4675 (1988).PubMedGoogle Scholar
  13. 13.
    J.A. Hadwiger, C. Wittenberg, H.E. Richardson, M. de Barros Lopes, and S.I. Reed, A novel family of cyclin homologs that control G1 in yeast, Proc Nail Acad Sci USA 86: 6255 (1989).CrossRefGoogle Scholar
  14. 14.
    F. Chang, and I. Herskowitz, Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2, Cell 63: 999 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    E.A. Elfion, P.L. Grisafi, and G.R. Fink, FUS3 encodes a edc2+/CDC28-related kinase required for the transition from mitosis into conjugation, Cell 60: 649 (1990).CrossRefGoogle Scholar
  16. 16.
    C. Wittenberg, K. Sugimoto, and S.I. Reed, Gi-specific cyclins of S. cerevesiae: Cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase, Cell 62: 225 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Koff, A. Giordano, D. Desai, K. Yamashita, J.W. Harper, S. Elledge, T. Nishimoto, D.O. Morgan, B.R. Franza, and J.M. Roberts, Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle, Science 257: 1689 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    V. Dulic, E. Lees, and S.I. Reed, Association of human cyclin E with a periodic G1-S phase protein kinase, Science 257: 1958 (1992).PubMedCrossRefGoogle Scholar
  19. 18.
    V. Dulic, E. Lees, and S.I. Reed, Association of human cyclin E with a periodic G1-S phase protein kinase, Science 257: 1958 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Ohtsubo, and J.M. Roberts, Cyclin-dependent regulation of G1 in mammalian fibroblasts, Science 259: 1908 (1993).PubMedCrossRefGoogle Scholar
  21. 21.
    H. Matsushime, M.E. Ewen, D.K. Strom, J-Y. Kato, S.K. Hanks, M.F. Roussel, and C.J. Sherr, Identification and properties of an atypical catalytic subunit (p34PSKJ3/CDK4) for mammalian D-type GI cyclins, Cell 71: 323 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Matsushime, M.F. Roussel, and C.J. Sherr, Novel mammalian cyclin (CYL) genes expressed during G1, in: The Cell Cycle, Cold Spring Harbor, NY, Cold Spring Harbor Symp Quant Biol, p 69 (1991).Google Scholar
  23. 22.
    H. Matsushime, M.F. Roussel, and C.J. Sherr, Novel mammalian cyclin (CYL) genes expressed during G1, in: The Cell Cycle, Cold Spring Harbor, NY, Cold Spring Harbor Symp Quant Biol, p 69 (1991).Google Scholar
  24. 24.
    Y. Xiong, H. Zhang, and D. Beach, D-type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA, Cell 71: 505 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    J-Y. Kato, H. Matsushime, S.W. Hiebert, M.E. Ewen, and C.J. Sherr, Direct bind-ing of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase, CDK4, Genes & Devel 7: 331 (1993).CrossRefGoogle Scholar
  26. 26.
    M.E. Ewen, H.K. Sluss, C.J. Sherr, H. Matsushime, J-Y. Kato, and D.M. Livingston, Functional interactions of the retinoblastoma protein with mammalian D-type cyclins, Cell 73: 487 (1993).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Murray, M.J. Solomon, and M.W. Kirschner, The role of cyclin synthesis and degradation in the control of MPF activity, Nature (London) 339: 280 (1989).CrossRefGoogle Scholar
  28. 28.
    M. Glotzer, A.W. Murray, and M.W. Kirschner, Cyclin is degraded by the ubiquitin pathway, Nature (London) 349: 132 (1991).CrossRefGoogle Scholar
  29. 29.
    R.A. Weinberg, Tumor suppressor genes, Science 254: 1138 (1991).PubMedCrossRefGoogle Scholar
  30. 30.
    S.F. Dowdy, P.W. Hinds, K. Louis, S.I. Reed, A. Arnold, and R.A. Weinberg, Physical interactions of the retinoblastoma protein with human cyclins, Cell 73: 499 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    D.W. Goodrich, N.P. Wang, Y-W. Qian, Y-H.P. Lee, and W-H. Lee, The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle, Cell 6: 953 (1991).Google Scholar
  32. 32.
    X-Q. Qin, T. Chittenden, D.M. Livingston, and W.G. Kaelin, Jr, Identification of a growth suppression domain within the retinoblastoma gene product, Genes & Devel 6: 953 (1992).CrossRefGoogle Scholar
  33. 33.
    P.W. Hinds, S. Mittnacht, V. Dulic, A. Arnold, S.I. Reed, and R.A. Weinberg, Regulation of retinoblastoma protein functions by ectopic expression of human cyclins, Cell 70: 993 (1992).PubMedCrossRefGoogle Scholar
  34. 34.
    J.S. Greenberger, M.A. Sakakeeny, R.J. Humphries, C.J. Eaves, and R.J. Eckner, Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines, Proc Natl Acad Sci USA 80: 2931 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    C.L. Rosenberg, E. Wong, E.M. Petty, A.E. Bale, Y. Tsujimoto, N.L. Harris, and A. Arnold, PRAD1, a candidate BCL1 oncogene: Mapping and expression in centrocytic lymphoma, Proc Nati Acad Sci USA 88: 9638 (1991).CrossRefGoogle Scholar
  36. 36.
    D.A. Withers, R.C. Harvey, J.B. Faust, O. Melnyk, K. Carey, and T.C. Meeker, Characterization of a candidate bel-1 gene, Mol Cell Biol 11: 4846 (1991).PubMedGoogle Scholar
  37. 37.
    G.A. Lammie, V. Fantl, R. Smith, E. Schuuring, S. Brookes, R. Michalides, C. Dickson, A. Arnold, and G. Peters, D11S287, a putative oncogene on chromo-some 11g13, is amplified and expressed in squamous cell and mammary carcinomas and is linked to BCL-1, Oncogene 6: 439 (1991).PubMedGoogle Scholar
  38. 38.
    W. Jiang, S.M. Kahn, N. Tomita, Y-J. Zhang, S-H. Lu, and I.B. Weinstein, Amplification and expression of the human cyclin D gene in esophageal cancer, Cancer Res 52: 2980 (1992).PubMedGoogle Scholar
  39. 39.
    S. Stilgenbauer, H. Dohner, M. Bulgay-Morschel, S. Weitz, M. Bentz, and P. Lichter, High frequency of monoallelic retinoblastoma gene deletion in B-cell chronic lymphoid leukemia shown by interphase cytogenetics, Blood 81: 2118 (1993).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Charles J. Sherr
    • 1
    • 2
  • Hitoshi Matsushime
    • 2
  • Jun-ya Kato
    • 2
  • Dawn E. Quelle
    • 2
  • Martine F. Roussel
    • 2
  1. 1.Howard Hughes Medical InstituteSt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of Tumor Cell BiologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations