Advertisement

Borrelia Burgdorferi Infection in Mice: Aspects of Inflammation and Immune Responses

  • Naveed Honarvar
  • Elena Böggemeyer
  • Chris Galanos
  • Manuel Modolell
  • Dietmar Vestweber
  • Reinhard Wallich
  • Michael D. Kramer
  • Ulrich E. Schaible
  • Markus M. Simon
Part of the NATO ASI Series book series (NSSA, volume 260)

Abstract

Lyme disease is caused by the spirochete Borrelia burgdorferi (B.burgdorferi) and to date the most common vector borne infectious disease of the temperate climate 1. The multifacetal nature of the illness which affects skin, joints, nervous system and heart as well as the inability of many patients to control infection, in spite of their specific immune responses, has been a considerable challenge for clinicians and scientists1. Two aspects of B.burgdorferi infections, i.e., the pathogenesis of Lyme disease with its chronic course of tissue destruction and the role of the immune response in protection, have attracted attention in the past.

Keywords

Lyme Disease Cold Spring Harbor Laboratory Borrelia Burgdorferi Severe Combine Immunodeficiency Peripheral Blood Lympho 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steere, A.C., 1989, Lyme disease, N. Engl. 321: 586.CrossRefGoogle Scholar
  2. 2.
    Simon, M.M., Schaible, U.E., Wallich, R., and Kramer, M.D., 1991a, A mouse model for Borrelia burgdorferi infection: approach to a vaccine against Lyme disease, Immunol. Today 12: 11.Google Scholar
  3. 3.
    Schaible, U.E., Wallich, R., Kramer, M.D., Museteanu, C., Rittig, M., Moter, S., and Simon, M.M. Role of the immune response in Lyme disease: lessons from the mouse model, In: Lyme Disease: Molecular and Immunologic Approaches, Cold Spring Harbor Laboratory Press (1992).Google Scholar
  4. 4.
    Fikrig, E., Barthold, S.W., Sears, J.E., Telford III, S.R., Spielman, A., Kantor, F.S., and Flavell, R.A. A recombinant vaccine for Lyme disease, in: Lyme Disease: Molecular and Immunologic Approaches, Cold Spring Harbor Laboratory Press (1992).Google Scholar
  5. 5.
    Barthold, S.W., de Souza, M., Fikrig, E., and Persing, D.H. Lyme Borreliosis in the laboratory mouse, Cold Spring Harbor Laboratory Press (1992).Google Scholar
  6. 6.
    Schaible, U.E., Gay, S., Museteanu, C., Kramer, M.D., Zimmer, G., Eichmann, K., Museteanu, U., and Simon, M.M., 1990b, Pathogenesis of Lyme Borreliosis in the severe combined immunodeficiency (SCID) mice, Am. J. Pathol. 137: 811.PubMedGoogle Scholar
  7. 7.
    Schaible, U.E., Kramer, M.D., Eichmann, K., Modolell, M., Museteanu, C., and Simon, M.M., 1990a, Monoclonal antibodies specific for the outer surface protein A (OspA) of Borrelia burgdorferi prevent Lyme Borreliosis in severe combined immunodeficiency (SCID) mice, Proc. Natl. Acad. Sci. 87: 3768.PubMedCrossRefGoogle Scholar
  8. 8.
    Schaible, U.E., Wallich, R., Kramer, M.D., Nerz, G., Museteanu, C., and Simon, M.M., 1993, Protection against Borrelia burgdorferi infection in SCID mice is confe-red by presensitized spleen- and partially B cells but not by T cells alone, submitted for publication.Google Scholar
  9. 9.
    Schaible, U.E., Kramer, M.D., Wallich, R., Tran, T., and Simon, M.M., 1991a, Experimental Borrelia burgdorferi infection in inbred mouse strains: Antibody response and association of H-2 genes with resistance and susceptibility to development of arthritis, Eur. J. Immunol. 21: 2397.PubMedCrossRefGoogle Scholar
  10. 10.
    Schoenfeld, R., Araneo, B., Ma, Y., Yang, L., and Weiss, J.J., 1992, Demonstration of a B-lymphocyte mitogen produced by the Lyme disease pathogen, Borrelia burgdorferi, Infect. Immun. 60: 455.Google Scholar
  11. 11.
    de Souza, M., Fikrig, E., Smith, A.L., Flavell, R.A., and Barthold, S.W., 1992, Nonspecific proliferative responses of murine lymphocytes to Borrelia burgdorferi antigens, J. Infect. Dis. 165: 471.PubMedCrossRefGoogle Scholar
  12. 12.
    Honarvar, N., Schaible, U.E., Galanos, C., Wallich, R., and Simon, M.M., 1993, Quantitative analysis of naive murine B cells responding to a Borrelia burgdorferi-associated mitogen(s), submitted for publication.Google Scholar
  13. 13.
    Simon, M.M., Kramer, M.D., Wallich, R., and Schaible, U.E. Lyme arthritis: Pathogenic principles emerging from studies in man and mouse, in: The Immunology of the Connective Tissue Diseases, G. Panayi, ed., Kluwer Acad. Publ., Lancaster, UK (1993).Google Scholar
  14. 14.
    Szezepanski, A., Furie, M.B., Benach, J.L., Lane, B.P., and Fleit, H.B., 1990, Interaction between Borrelia burgdorferi and endothelium in vitro, J. Clin. Invest. 85: 1637.CrossRefGoogle Scholar
  15. 16.
    Comstock, L.E., Fikrig, E., Shoberg, R.J., Flavell, R.A., and Thomas, D.D., 1993, A monoclonal antibody to OspA inhibits association of Borrelia burgdorferi with human endothelial cells. Infec. and Immun. 61: 423.Google Scholar
  16. 17.
    Montesano, R., Pepper, M.S., Möhle-Steinlein, U., Risau, W., Wagner, E.F., and Orci, L., 1990, Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62: 435.PubMedCrossRefGoogle Scholar
  17. 18.
    Hahne, M., Jäger, U., Isenmann, S., Hallmann, R., and Vestweber, D., 1993, Five tumor necrosis factor-indu-cible cell adhesion mechanisms on the surface of mouse endothelioma cells mediate the binding of leukocytes, J. Cell Biol. 121: 655.PubMedCrossRefGoogle Scholar
  18. 19.
    Böggemeyer, E. In. vitro Expression von Adhäsionsmolekülen auf Endothelzellen der Maus nach Inkubation mit dem Erreger der Lyme Borreliose: Borrelia burgdorferi, Diploma thesis, Freiburg i.Br. (1993).Google Scholar
  19. 20.
    Miyake, K., Medina, K., Ishihara, K., Kimoto, M., Auerbach, R., and Kincade, P.W., 1991, A VCAM-like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture. J. Cell. Biol. 114: 557.PubMedCrossRefGoogle Scholar
  20. 21.
    Sher, B.T., Bargatze, R., Holzmann, B., Gallatin, W.M., Matthews, D., Wu, B., Picker, L., Butcher, E.C., and Weissman, I.L., 1988, Homing receptors and metastasis, Adv. Can. Res. 51: 361.Google Scholar
  21. 22.
    Dattwyler, R.J., Thomas, J.A., Benach, J.L., and Golight-ly, M.G., 1986, Cellular immune response in Lyme disease: the response to mitogens, live Borrelia burgdorferi, NK cell function and lymphocytte subsets, Zentralbl. Bakteriol. Mikrobiol. Hyg. Ser. A 263: 151.Google Scholar
  22. 23.
    de Souza, M.S., Smith, A.L., Beck, D.S., Terwilliger, G.A., Fikrig, E., and Barthold, S.W., 1993, Long-term study of cell-mediated responses to Borrelia burgdorferi in the laboratory mouse, Infect. Immun. 61: 1814.Google Scholar
  23. 24.
    Zoschke, D.D., Skemp, A.A., and Defosse, D.L., 1991, Lym-phoproliferative responses to Borrelia burgdorferi in Lyme disease, Ann. Intern. Med. 114: 285.PubMedCrossRefGoogle Scholar
  24. 25.
    Katona, L.I., Beck, G., and Habicht, G.S., 1992, Purifica-tion and immunological characterization of a major low-molecular-weight lipoprotein from Borrelia burg-dorferi. Infect. Immun. 60: 4995.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Naveed Honarvar
    • 1
  • Elena Böggemeyer
    • 1
  • Chris Galanos
    • 1
  • Manuel Modolell
    • 1
  • Dietmar Vestweber
    • 2
  • Reinhard Wallich
    • 3
  • Michael D. Kramer
    • 4
  • Ulrich E. Schaible
    • 1
  • Markus M. Simon
    • 1
  1. 1.Max-Planck-Institut für Immunbiologie FreiburgGermany
  2. 2.Hans-Spemann-Labor der Max-Planck-GesellschaftFreiburgGermany
  3. 3.Abteilung Angewandte ImmunologieDeutsches KrebsforschungszentrumHeidelbergGermany
  4. 4.Institut für Immunologie und Serologie der Universität HeidelbergHeidelbergGermany

Personalised recommendations