Skip to main content

Functional Aspects of Three Modified Nucleosides, Ψ, ms2io6A, and m1G, Present in the Anticodon Loop of tRNA

  • Chapter
Book cover The Translational Apparatus

Abstract

Transfer RNAs contain many modified nucleosides, which are derivatives of the four normal nucleosides. At present more than 75 different modified nucleosides are characterised (Edmonds et al., 1991). The synthesis of the majority of the modified nucleosides is carried out on the preformed precursor tRNA except in two cases. Queuine and hypoxanthine are synthesised from guanine and adenine, respectively, and then incorporated into the tRNA through an exchange reaction. The synthesis of these 75 modified nucleosides is catalysed by enzymes, which are highly specific, not only for the nucleoside that they modify but also for the position of the target nucleoside in the tRNA. For example there are different enzymes catalysing the formation of Ψ in the anticodon stem and in the TΨC-loop (Singer et al., 1972). The importance of tRNA modification is reflected by the fact that about 1% of the genetic information in Escherichia coli and Salmonella typhimurium is devoted to the synthesis of tRNA modifying enzymes, which is 4-fold more than that used for the synthesis of their substrate, tRNA (Björk, 1992). This paper will discuss the function of three modified nucleosides present in the anticodon region. Mutants defective in their synthesis have been used to study their role in cell physiology and in the decoding process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avis, P.F., Armstrong, D. J., Schäfer, K. P., and Söll, D. (1975). Maturation of ahypermodified nucleoside in transfer RNA. Nucl. Acids Res. 2: 691–698.

    Article  Google Scholar 

  • W.M. Barnes 1978 region: seven histidine codons in a row. Proc. Natl. Acad. Sci.(USA), 75: 42–81

    Google Scholar 

  • Björk, G. R. (1984). Transfer RNA modification in different organisms. Chemica Scripta. 26B: 91–95.

    Google Scholar 

  • Björk G. R. (1992). The role of modified nucleosides in transfer RNA interactions. in: “Transfer RNA in protein synthesis”. Hatfield, D. L., Lee, B. J., and, Pirtle R. M., eds, CRC press, Boca Raton, FL.

    Google Scholar 

  • Björk, G. R., Wikström, P. M., and Byström, A. S. (1989). Prevention of translational frameshifting by the modified nucleoside 1-Methylguanosine. Science 244: 986–989.

    Google Scholar 

  • Bossi, L., and Roth, J. R.. (1980). The influence of codon context on genetic code translation. Nature 286:123–127.

    Article  PubMed  CAS  Google Scholar 

  • Bouadloun, F, Srichaiyo, T., Isaksson L. A., and Björk G. R. (1986). Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J. Bacteriol. 166: 1022–1027.

    PubMed  CAS  Google Scholar 

  • Buck M., and Ames B. N. (1984). A modified nucleotide in tRNA as a possible regulator of aerobiosis: Synthesis of cis-2-methyl-thioribosylzeatin in tRNA of Salmonella. Cell 36: 523–531.

    CAS  Google Scholar 

  • Buck, M., McCloskey, J. A., Basile, B., and Ames, B. N. (1982). Cis-2-methylthioribosylzeatin (ms2io6A) is present in transfer RNA of Salmonella typhimurium, but not Escherichia coll. Nucl. Acids Res. 10: 5649–5662.

    CAS  Google Scholar 

  • Byström, A. S., Hjalmarsson, K. J., Wikström, P. M., and Björk, G. R. (1983). The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide. EMBO J. 2: 899–905.

    PubMed  Google Scholar 

  • Carter, P. W., Weiss, D. L., Weith, H. L., and Calvo J. M. (1985). Mutations that convert the four leucine codons of the Salmonella typhimurium leu leader to four threonine codons. J. Bacteriol. 162: 943–949.

    PubMed  CAS  Google Scholar 

  • Connolly, D. M., and Winkler, M.E. (1991). Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations. J. Bacteriol. 173: 1711–1721.

    PubMed  CAS  Google Scholar 

  • Cortese, R., Kammen, H. O., Spengler, S. J., and Ames B. N. (1974).Biosynthesis ofpseudouridine in transfer ribonucleic acid. J. Biol. Chem. 249: 1103–1108.

    PubMed  CAS  Google Scholar 

  • Craigen, W. J., Cook, R. G., Tate, W. P., and Caskey, C. T. (1985). Proc. Natl. Acad. Sci.USA 82: 3616–3620.

    Article  PubMed  CAS  Google Scholar 

  • Curran, J. F., and Yarus, M. (1987). Reading frame selection and transfer RNA anticodon loop stacking. Science 238: 1545–1550.

    Article  PubMed  CAS  Google Scholar 

  • Curran, J. F., and Yarus, M. (1988). Use of tRNA suppressors to probe the regulation of Escherichia coli release factor 2. J. Mol. Biol. 203: 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Curran, J. F., and Yarus, M. 1989. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J. Mol. Biol. 209: 65–77.

    CAS  Google Scholar 

  • Diaz, I., and Ehrenberg, M. (1992). ms2i6A deficiency enhances proofreading in translation. J. Mol. Biol. 222: 1161–1171.

    Article  Google Scholar 

  • Edmonds, C. G., Crain, P. F., Gupta, R., Hashizume, T., Hocart, C. H., Kowalak, J. A., Pomerantz, S. C.,. Stetter K. O, and McCloskey, J. A..(1991). Posttranscriptional modification of tRNA in thermophilic Archaea (Archaebacteria). J Bacteriol. 173: 3138–3148.

    PubMed  CAS  Google Scholar 

  • Eisenberg, S. P., Yarus, M., and, Soll, L. 1979. The effect of an Escherichia coil regulatory mutation on transfer RNA structure. J. Mol. Biol. 135: 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Ericson, J. U., and Björk, G. R. 1986. Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J. Bacteriol. 166: 1013–1021.

    PubMed  CAS  Google Scholar 

  • Ericson, J. U., and Björk, G. R. (1991). tRNA anticodons with the modified nucleoside 2methylthio-N6-(4-hydroxyisopentenyl)adenosine distinguish between bases 3’ of the codon. J Mol. Biol. 218: 509–516.

    Article  PubMed  CAS  Google Scholar 

  • Gaber R. F. and, Culbertson M. R. (1984). Codon recognition during frameshift suppression in Saccharomyces cerevisiae. Mol.Cell.Biol 4: 2052–2061.

    CAS  Google Scholar 

  • Griffiths, E., and, Humphreys, J. 1978. Alterations in tRNAs containing 2-methylthio-N6-A 2-isopentenyl)-adenosine during growth of enteropathogenic Escherichia coli in the presence of iron-binding proteins. Eur. J. Biochem. 82: 503–513.

    Article  PubMed  CAS  Google Scholar 

  • Grosjean, H., K. Nicoghosian, K., Haumont, E., Söll, D. and, Cedergren, R. 1985. Nucleotide sequences of two serine tRNAs with a GGA anticodon: The structure-function relationships in the serine family of E. coli tRNAs. Nucl. Acid Res. 13: 5697–5706.

    Article  CAS  Google Scholar 

  • Hagervall, T. G., Tuohy, T. M. F., Atkins J. F. and, Björk, G. R. (1992). Deficiency of 1methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J. Mol Biol. Submitted.

    Google Scholar 

  • Hagervall, T. G., Ericson, J. U., Esberg, K. B., Ji-nong, L. and, Björk, G. R. 1990. Role tRNA modification in translation fidelity. Biochem. Biophys. Acta 1050: 263–266.

    Article  Google Scholar 

  • Hall, R. H. The modified nucleosides in nucleic acids. Columbia University Press. 1971. Johnston, H. M., Barnes, W. M., Chumley, F. G., Bossi, L., and Roth, J. R. Model for regulation of the histidine operon of Salmonella. Proc. Natl. Acad. Sci. (USA). 77: 508, 1980.

    Google Scholar 

  • Komine Y., Adachi T., Inokuchi H., Ozeki H. (1990). Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J. Mol. Biol. 212: 579–598.

    Article  PubMed  CAS  Google Scholar 

  • Newmark R. A. & Cantor C. R. (1968). Nuclear magnetic resonance study of the interactions of guanosine and cytidine in dimethyl sulfoxide. J. Am. Chem. Soc. 90: 5010–5017.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, D. T., P. H. Blum, and S. W. Artz,1983. Effects of the hisT mutation of Salmonella typhimurium on translation elongation rate. J. Bacteriol. 153: 357–363.

    PubMed  CAS  Google Scholar 

  • Parker, J. 1982. Specific mistranslation in hisT mutants of Escherichia coli Mol Gen. Genet. 187: 405–409.

    CAS  Google Scholar 

  • Pieczenik G. (1980). Predicting coding function from nucleotide sequence or survival of “fitness” of tRNA. Proc. Natl. Acad. Sci. USA. 77: 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, A. H., and M. L. Gefter. 1969. An iron-dependent modification of several transfer RNA species in Escherichia coll. J. Mol. Biol. 46: 581–584.

    CAS  Google Scholar 

  • Roth, J. R, D. N. Anton, and P. E. Hartman. 1966. Histidine regulatory mutants in Salmonella typhimurium. I. Isolation and general properties.J. Mol. Biol. 22: 305–323.

    Article  PubMed  CAS  Google Scholar 

  • Singer, C., Smith G. R., Cortese C., and Ames B. N. (1972). Mutant tRNA ineffective in repression and lacking two pseudouridine modifications. Nature (London) New Biol. 238: 72.

    CAS  Google Scholar 

  • Sprinzl M., Dank N., Nock S., Schön A. (1991). Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 19: supplement, 2127–2171.

    Article  PubMed  CAS  Google Scholar 

  • Sroga G. E., Nemoto F., Kuchino Y. and, Björk G. R. (1992). Insertion in the anticodon loop or base substitution (sufC) in the anticodon stem of tRNA PZ from Salmonella typhimurium induces suppression of frameshift mutations. Nucl. Acids. Res. 20:3463–3469.

    Article  PubMed  CAS  Google Scholar 

  • Turnbough Jr., C. L., Neill, R. J., Landsberg, R. and, Ames, B. N. (1979). Pseudouridylation of tRNAs and its role in regulation in Salmonella typhimurium. J. Biol. Chem. 254: 5111–5119.

    PubMed  CAS  Google Scholar 

  • Weiss R. B:, Dunn D. M., Atkins J. F., Gesteland R. F. (1987). Slippery runs, shifty stops, backward steps and forward hops: -2, -1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harbor Symp. Quant. Biol. 52: 687–693.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, R. B., D. M. Dunn, J. E. Dahlberg, J. F. Atkins, and R. F. Gesteland. 1988. EMBO J. 7:1503–1507.

    PubMed  CAS  Google Scholar 

  • Weiss R. B., Dunn D. M., Atkins J. F., Gesteland R. F. (1990). Ribosomal frameshifting from -2 to +50 nucleotides. Prog Nucl Acid Mol Biol 39: 159–183.

    Article  CAS  Google Scholar 

  • Wettstein, F. O., and G. S. Stent. 1968. Physiologically induced changes in the property of phenylalanine tRNA in Escherichia coli. J. Mol. Biol. 38: 25–40.

    CAS  Google Scholar 

  • Woese, C. R. 1967. in: “The genetic code. The molecular basis for genetic expression”. Harper and Row, p. 134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hagervall, T.G. et al. (1993). Functional Aspects of Three Modified Nucleosides, Ψ, ms2io6A, and m1G, Present in the Anticodon Loop of tRNA. In: Nierhaus, K.H., Franceschi, F., Subramanian, A.R., Erdmann, V.A., Wittmann-Liebold, B. (eds) The Translational Apparatus. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2407-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2407-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6021-6

  • Online ISBN: 978-1-4615-2407-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics