Skip to main content

The Bifunctional Nature of Ribosomal Proteins and Speculations on Their Origins

  • Chapter
The Translational Apparatus

Abstract

We undertook some years ago to isolate, to characterize, and to determine the structure of eukaryotic (rat) ribosomal proteins and nucleic acids (Wool, 1979). We chose rat ribosomes for reasons that are buried in the history of our research. What was it that led us to this undertaking which was not infrequently derided as an arduous, tedious, time consuming chore lacking excitement or intellectual challenge, indeed, as lacking importance? We made a commitment to the protein and nucleic acid chemistry because of an abiding belief that it was essential for a solution of the structure of the organelle; the structure in turn was needed for a coherent molecular account of the function of ribosomes in protein synthesis. Almost everyone agreed that this last was an enterprise that was to be taken seriously - that it was a formidable intellectual challenge, that it was of great importance, and that it did not lack for excitement. Moreover, no matter how pretentious it sounds, we felt we would be making a contribution to a compilation of data (the primary structure of the seventy to eighty proteins) that could be viewed as a general resource. It is perhaps even more pretentious to say that this prediction has been amply substantiated, that the sequences have been useful to many, including scientists whose research did not touch directly on ribosomes or protein synthesis. From the beginning we suspected that the sequences of amino acids in the proteins might also help in understanding the origins and the evolution of the ribosomal proteins, in unraveling the functions of the proteins, in defining the rules that govern the interaction of the proteins with the rRNAs, and in uncovering the amino acid sequences that direct the proteins to the nucleolus for assembly on nascent rRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Atia, G.R., Fruscolini, P., and Jacobs-Lorena, M., 1985, Translational regulation of mRNAs for ribosomal proteins during early Drosophila development, Biochemistry 24:5798.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, S., and Lambertsson, A., 1990, Characterization of a novel Minute-locus in Drosophila melanogaster. a putative ribosomal protein gene, Heredity 65:51.

    Article  PubMed  CAS  Google Scholar 

  • Auer, J., Spicker, G., and Böck, A., 1989, Organization and structure of the Methanococcus transcriptional unit homologous to the Escherichia coli “Spectinomycin Operon”. Implications for the evolutionary relationship of 705 and 80S ribosomes, J. Mol. Biol. 209:21.

    Article  PubMed  CAS  Google Scholar 

  • Baker, R.T., and Board, P.G., 1991, The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes, Nucleic Acids Res. 19:1035.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ishai, R., Scharf, R, Sharon, R., and Kapten, I., 1990, A human cellular sequence implicated in trk oncogene activation is DNA damage inducible, Proc. Natl. Acad. Sci. U.S.A. 87:6039.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J.M., 1986, Potential metal-binding domains in nucleic acid binding proteins, Science 232:485.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J.M., 1990, Zinc finger domains: Hypotheses and current knowledge, Annu. Rev. Biophys. Biophys. Chem. 19:405.

    Article  PubMed  CAS  Google Scholar 

  • Berthold, V., and Geider, K., 1976, Interaction of DNA with DNA-binding proteins. The characterization of protein HD from Escherichia con and its nucleic acid complexes, Eur. J. Biochem. 71:443.

    Article  PubMed  CAS  Google Scholar 

  • Block, R., and Haseltine, W.A., 1974, In Vitro synthesis of ppGpp and pppGpp, in: Ribosomes, Nomura, M., Tissières, A., and Lengyel, P., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Bowman, A.L., Delannoy, M.R., and Wilson, K.L., 1992, GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro, J. Cell. Biol. 116:281.

    Article  Google Scholar 

  • Brown, D.D., 1984, The role of stable complexes that repress and activate eucaryotic genes, Cell 37:359.

    Article  PubMed  CAS  Google Scholar 

  • Cashel, M., and Gallant, J., 1974, Cellular regulation of guanosine tetraphosphate and guanosine pentaphosphate, in: Ribosomes, Nomura, M., Tissières, A., and Lengyel, P., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Chan, Y.L., Devi, K.R.G., Olvera, J., and Wool, I.G., 1990, The primary structure of rat ribosomal protein S3, Arch. Biochem. Biophys. 283:546.

    Article  PubMed  CAS  Google Scholar 

  • Chan, Y.L., Olvera, J., and Wool, I.G., 1987, The primary structure of rat ribosomal protein S8, Nucleic Acids Res. 15:9451.

    Article  PubMed  CAS  Google Scholar 

  • Chan, Y.L., Suzuki, K., Olvera, J., and Wool, I.G., 1992, Zinc finger-like motifs in rat ribosomal proteins S27 and S29, submitted.

    Google Scholar 

  • Dabbs, E.R., 1985, Mutant studies on the prokaryotic ribosome, in: Structure, Function, and Genetics of Ribosomes, Hardesty, B., and Kramer, G., eds, Springer-Verlag, New York.

    Google Scholar 

  • Demple, B., and Linn, S., 1980, DNA N-glycosylases and UV repair, Nature 287:203.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, E.M.C., Beer-Romero, P., Brown, L.G., Ridley, A., McNeil, J.A., Lawrence, L.G., Willard, H.F., Bieber, F.R., and Page, D.C., 1990, Homologous ribosomal protein genes on the human X and Y chromosomes: Escape from X inactivation and possible implications for Turner syndrome, Cell 63:1205.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, D.I., Schauer, A.T., Baumann, M.R., Baron, L.S., and Adhya, S.L., 1981, Evidence that ribosomal protein S10 participates in control of transcription termination, Proc. Natl. Acad. Sci. U.S.A. 78:1115.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, J.M., Singh, K.K., Yonder Harr, R.A., and Emr, S.D., 1991, Mitochondrial protein import: isolation and characterization of the Saccharomyces cerevisiae MFT1 gene, Mol. Gen. Genet. 225:483.

    Article  PubMed  CAS  Google Scholar 

  • Grabowski, D.T., Deutsch, W.A., Derda, D., and Kelley, M.R., 1991, Drosophila AP3, a presumptive DNA repair protein, is homologous to human ribosomal associated protein PO, Nucleic Acids Res. 19:4297.

    Article  PubMed  CAS  Google Scholar 

  • Grabowski, D.T., Pieper, R.O., Futscher, B.W., Deutsch, W.A., Erickson, L.C., and Kelley, M.R., 1992, Expression of ribosomal phosphoprotein PO is induced by antitumor agents and increased in Mer human tumor cell lines, Carcinogenesis 13:259.

    Article  PubMed  CAS  Google Scholar 

  • Henkin, T.M., Moon, S.H., Mattheakis, L.C., and Nomura, M., 1989, Cloning and analysis of the spc ribosomal protein operon of Bacillus subtilis: comparison with the spc operon of Escherichia coli, Nucleic Acids Res. 17:7469.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J.A., and Linn, S., 1988, DNA damage and oxygen radical toxicity, Science 240:1302.

    Article  PubMed  CAS  Google Scholar 

  • Kamen, R.I., 1975, Structure and function of the QB RNA replicase, in: RNA Phages, Zinder, N.D., ed., Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Kay, M.A., and Jacobs-Lorena, M., 1987, Selective translational regulation of ribosomal protein gene expression during early development of Drosophila melanogaster, Mol. Cell. Biol. 5:3583.

    Google Scholar 

  • Kelley, M.R., Venugopal, S., Harless, J., and Deutsch, W.A., 1989, Antibody to a human DNA repair protein allows for cloning of a Drosophila cDNA that encodes an apurinic endonuclease, Mol. Cell. Biol. 9:965.

    CAS  Google Scholar 

  • Kho, C.J., and Zarbl, H., 1992, Fte-1, a v fos transformation effector gene, encodes the mammalian homologue of a yeast gene involved in protein import into mitochondria, Proc. Natl. Acad. Sci. U.S.A. 89:2200.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., and Linn, S., 1988, The mechanisms of action of E. coli endonuclease III and T4 UV endonuclease (endonuclease V) at AP sites, Nucleic Acid Res. 16:1135.

    Article  PubMed  CAS  Google Scholar 

  • Klug, A., and Rhodes, D., 1987, ‘Zinc fingers’: a novel protein motif for nucleic acid recognition, Trends Biochem, Sci. 12:464.

    Article  CAS  Google Scholar 

  • Kongsuwan, K., Quiang, Y., Vincent, A., Frisardi, M.C., Rosbash, M., Lengyel, J.A., and Merriam, J., 1985, A Drosophila Minute gene encodes a ribosomal protein, Nature 317:555.

    Article  PubMed  CAS  Google Scholar 

  • Kraemer, K.H., de Weerd-Kastelein, E.A., Robbins, J.H., Keijzer, W., Barrett, S.F., Petinga, R.A., and Bootsma, D., 1975, Five complementation groups in xeroderma pigmentosum, Mutation Res. 33:327.

    Article  PubMed  CAS  Google Scholar 

  • Kraemer, K.H., Lee, M.M., and Scotto, J., 1984, DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum, Carcinogenesis 5:511.

    Article  PubMed  CAS  Google Scholar 

  • Kuhnlein, U., Penhoet, E.E., and Linn, S., 1976, An altered apurinic DNA endonuclease activity in group A and group D xeroderma pigmentosum fibroblasts, Proc. Natl. Acad Sci. U.S.A. 73:1169.

    Article  PubMed  CAS  Google Scholar 

  • Lindsley, D.L., and Grell, E.H., 1986, Genetic variations of Drosophila melanogaster, Carnegie Inst. Washington Publ., 627.

    Google Scholar 

  • Mason, S.W., Li, J., and Greenblatt, J., 1992, Direct interaction between two Escherichia coli transcription antitermination factors, NusB and ribosomal protein S10, J. Mol. Biol. 223:55.

    Article  PubMed  CAS  Google Scholar 

  • Mende, L., Timm, B., and Subramanian, A.R., 1978, Primary structures of two homologous ribosome-associated DNA-binding proteins of Escherichia coli, FEBS Lett. 96:395.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J., McLachlan, A.D., and Klug, A., 1985, Repetitive zinc-binding domains in the protein transcription factor IRA from Xenopus oocytes, EMBO J. 4:1609.

    PubMed  CAS  Google Scholar 

  • Myers, A.M., Crivellone, MD., and Tzagoloff, A., 1987, Assembly of the mitochondrial membrane system: MRP1 and MRP2, two yeast nuclear genes coding for mitochondria) ribosomal proteins, J. Biol. Chem. 262:3388.

    PubMed  CAS  Google Scholar 

  • Noller, H.F., Hoffarth, V., and Zimniak, L., 1992, Unusual resistance of peptidyl transferase to protein extraction procedures, Science, 256:1416.

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo, S., Muto, A., Kawauchi, Y., Yamao, F., and Osawa, S., 1987, The ribosomal protein gene cluster of Mycoplasma capricolum, MoL Gen. Genet. 210:314.

    Article  PubMed  CAS  Google Scholar 

  • Piatigorsky, J., and Wistow, G., 1991, The recruitment of crystallins: new functions precede gene duplication, Science 252:1078.

    Article  CAS  Google Scholar 

  • Pierandrei-Amaldi, P., Campioni, N., Beccari, E., Bozzoni, I., and Amaldi, F., 1982, Expression of ribosomal-protein genes in Xenopus laevis development, Cell 30:163.

    Article  PubMed  CAS  Google Scholar 

  • Ransone, L.J., and Verma, I.M., 1990, Nuclear proto-oncogenes Fos and Jun, Annu. Rev. Cell Biol. 6:539.

    Article  PubMed  CAS  Google Scholar 

  • Redman, K.L., and Rechsteiner, M., 1989, Identification of the long ubiquitin extension as ribosomal protein S27a, Nature 338:438.

    Article  PubMed  CAS  Google Scholar 

  • Rice, P.A., and Steitz, T.A., 1989, Ribosomal protein L7/L12 has a helix-turn-helix motif similar to that found in DNA-binding regulatory proteins, Nucleic Acid Res. 17:3757.

    Article  PubMed  CAS  Google Scholar 

  • Rich, B.E., and Steitz, J.A., 1987, Human acidic ribosomal phosphoproteins PO, Pl, and P2: analysis of cDNA clones, in vitro synthesis, and assembly, Mol. Cell. Biol. 7:4065.

    PubMed  CAS  Google Scholar 

  • Schwabe, J.W.R., and Rhodes, D., 1991, Beyond zinc fingers: steroid hormone receptors have a novel structural motif for DNA recognition, Trends Biochem. Sci. 16:291.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, T.A., 1990, Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding, Quart. Rev. Biophys. 23:205.

    Article  CAS  Google Scholar 

  • Stern, S., Powers, T., Changchien, L.M., and Noller, H.F., 1989, RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA, Science 244:783.

    Article  PubMed  CAS  Google Scholar 

  • Suryanarayana, T., and Subramanian, A.R., 1978, Specific association of two homologous DNA-binding proteins to the native 30S ribosomal subunits of Escherichia coli, Biochim. Biophys. Acta 520:342.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T., Aoyama, Y., Chan, Y.L., and Wool, I.G., 1989, The primary structure of rat ribosomal protein L37a, Eur. J. Biochem. 183:15.

    Article  PubMed  CAS  Google Scholar 

  • Takakura, H., Tsunasawa, S., Miyagi, M., and Warner, J.R., 1992, NH2-terminal acetylation of ribosomal proteins of Saccharomyces cerevisiae, J. Biol. Chem. 267:5442.

    PubMed  CAS  Google Scholar 

  • Toczyski, D.P.W., and Steitz, J.A., 1991, EAP, a highly conserved cellular protein associated with Epstein-Barr virus small RNAs (EBERs), EMBO J. 10:459.

    PubMed  CAS  Google Scholar 

  • Warner, J.R., Elion, E.A., Dabeva, M.D., and Schwindeger, W.F., 1985, The ribosomal genes of yeast and their regulation, in: Structure, Function, and Genetics of Ribosomes, Hardesty, B., and Kramer, G., eds., Springer-Verlag, New York.

    Google Scholar 

  • Woodgate, R., Rajagopalan, M., Lu, C., and Echols, H., 1989, UmuC mutagenesis protein of Escherichia coli: Purification and interaction with UmuD and UmuD’, Proc. Natl. Acad. Sci. U.S.A. 86:7301.

    Article  PubMed  CAS  Google Scholar 

  • Wool, I.G., 1979, The structure and function of eukaryotic ribosomes, Ann. Rev. Biochem., 48:719.

    Article  PubMed  CAS  Google Scholar 

  • Wool, I.G., Endo, Y., Chan, Y.L., and Glück, A., 1990, Structure, function, and evolution of mammalian ribosomes, in: The Ribosome: Structure, Function, and Evolution, Hill, W.E., Dahlberg, A., Garrett, R.A., Moore, P.B., Schlessinger, D., and Warner, J.R., eds., Amer. Soc. Microbiol., Washington, D.C..

    Google Scholar 

  • Yaguchi, M., Roy, C., Reithmeier, R.A.F., Wittmann-Liebold, B., and Wittman, H.G., 1983, The primary structure of protein S14 from the small ribosomal subunit of Escherichia coli, FEBS Lett. 154:21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wool, I.G. (1993). The Bifunctional Nature of Ribosomal Proteins and Speculations on Their Origins. In: Nierhaus, K.H., Franceschi, F., Subramanian, A.R., Erdmann, V.A., Wittmann-Liebold, B. (eds) The Translational Apparatus. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2407-6_69

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2407-6_69

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6021-6

  • Online ISBN: 978-1-4615-2407-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics