Reconstitution of a Minimal Small Ribosomal Subunit

  • Andrew Scheinman
  • Anna-Marie Aguinaldo
  • Agda M. Simpson
  • Marian Peris
  • Gary Shankweiler
  • Larry Simpson
  • James A. Lake

Abstract

It is appropriate that at a meeting dedicated to H. G. Wittmann we should emphasize comparative studies of the three-dimensional structure of the ribosome since he and his collaborators have made such important contributions to this field. In this paper we present data detailing the first isolation of small mitochondrial ribosomal subunits from the hemoflagellate Leishmania tarentolae. Their structure is interesting because these are the smallest ribosomes yet found (their small subunit rRNA sediments at 9S and is only 610 nucleotides long). We also show that particles similar in structure to these small subunits can be reconstituted from in vitro transcribed mitochondrial 9S rRNA and E. coli proteins.

Keywords

Sucrose Phenol Amide Heparin Sedimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Braly, L. Simpson and F. Kretzer, Isolation of kinetoplast-mitochondrial complexes from Leishmania tarentolae, J. Protozool. 21:782 (1974).PubMedGoogle Scholar
  2. D.A. Campbell, K. Kubo, C.G. Clark and J.C. Boothroyd, Precise identification of cleavage sites involved in the unusual processing of trypanosome ribosomal RNA, J. Mol. Biol. 196:113 (1987).PubMedCrossRefGoogle Scholar
  3. V.F. de la Cruz, N. Neckelmann and L. Simpson, Sequences of six genes and several open reading frames in the kinetoplast maxicircle DNA of Leishmania tarentolae, J. Biol. Chem. 259:15136 (1984).PubMedGoogle Scholar
  4. V.F. de la Cruz, J.A. Lake, A.M. Simpson and L. Simpson, A minimal ribosomal RNA: sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae, Proc. Natl. Acad. Sci. USA. 82:1401 (1985a).CrossRefGoogle Scholar
  5. V.F. de la Cruz, A.M. Simpson, J.A. Lake and L. Simpson, Primary sequence and partial secondary structure of the 12S kinetoplast (mitochondrial) ribosomal RNA from Leishmania tarentolae: conservation of peptidyl-transferase structural elements, Nucl. Acids Res. 13:2337 (1985b).CrossRefGoogle Scholar
  6. M.L. Goldberg and J.A. Steitz, Cistron specificity of 30S ribosomes heterologously reconstituted with components from Escherichia coli and Bacillus stearothermophilus, Biochem. 13:2123 (1974).CrossRefGoogle Scholar
  7. W.A. Held, S. Mizushima and M. Nomura, Reconstitution of Escherichia coli 30S Ribosomal Subunits from Purified Molecular Components, J. Biol. Chem. 248:5720 (1973).PubMedGoogle Scholar
  8. W.A. Held, W.R. Gette and M. Nomura, Role of 16S ribosomal ribonucleic acid and the 30S ribosomal protein S 12 in the initiation of natural messenger ribonucleic acid translation, Biochem. 13:2115 (1974).CrossRefGoogle Scholar
  9. K. Higo, W. Held, L. Kahan and M. Nomura, Functional correspondence between 30S ribosomal proteins of Escherichia coli and Bacillus stearothermophilus, Proc. Natl. Acad. Sci. USA. 70:944 (1973).PubMedCrossRefGoogle Scholar
  10. W. Krzyzosiak, R. Denman, K. Nurse, W. Hellmann, M. Boublik, C.W. Gehrke, P.F. Agris and J. Ofengand, In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome, Biochem. 26:2353 (1987).CrossRefGoogle Scholar
  11. J.A. Lake, Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes, J. Mol. Biol. 105:131 (1976).PubMedCrossRefGoogle Scholar
  12. J.A. Lake, Practical aspects of immune electron microscopy, Meth. Enzymol. 61:250 (1979).PubMedCrossRefGoogle Scholar
  13. J A Lake, Evolving ribosome structure: domains in archaebacteria, eubacteria, eocytes and eukaryotes, Ann. Rev. Biochem. 54:507 (1985).PubMedCrossRefGoogle Scholar
  14. H. Masuda, L. Simpson, H. Rosenblatt and A.M. Simpson, Restriction map, partial cloning and localization of 9S and 12S kinetoplast RNA genes on the maxicircle component of the kinetoplast DNA of Leishmania tarentolae, Gene 6:51 (1979).PubMedCrossRefGoogle Scholar
  15. P. Melancon, M. Gravel, G. Boileau and L. Brakier-Gingras, Reassembly of active 30S ribosomal subunits with an unmethylated in vitro transcribed 16S rRNA, Biochem. Cell. Biol. 65:1022 (1987).PubMedCrossRefGoogle Scholar
  16. M. Nomura, P. Traub and H. Bechmann, Hybrid 30S ribosomal particles reconstituted from components of different bacterial origins, Nature. 219:793 (1968).PubMedCrossRefGoogle Scholar
  17. A. Scheinman, The construction and analysis of mutant small E. coli ribosomal subunits with inserts in the 16S rRNA, Ph.D. thesis, University of California, Los Angeles (1989).Google Scholar
  18. L. Simpson and P. Braly, Synchronization of Leishmania tarentolae by hydroxyurea, J. Protozool. 17:511 (1970).PubMedGoogle Scholar
  19. L. Simpson and A.M. Simpson, Kinetoplast RNA of Leishmania tarentolae, Cell. 14:169 (1978).PubMedCrossRefGoogle Scholar
  20. T.W. Spithill, P. Nagley and A.W. Linnane, Biogenesis of mitochondria 51, Molec. Gen. Genet. 173:159 (1979).PubMedCrossRefGoogle Scholar
  21. P. Traub, S. Mizushima, C.V. Lowry and M. Nomura, Reconstitution of ribosomes from subribosomal components, Meth. Enzymol. 20: 391 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Andrew Scheinman
    • 1
  • Anna-Marie Aguinaldo
    • 1
  • Agda M. Simpson
    • 1
  • Marian Peris
    • 1
  • Gary Shankweiler
    • 1
  • Larry Simpson
    • 1
  • James A. Lake
    • 1
  1. 1.Molecular Biology Institute and Department of BiologyUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations