Skip to main content

The Aminoacyl-tRNA Synthetase Family: An Evolutionary View of Their Structural Organization

  • Chapter
The Translational Apparatus

Abstract

The aminoacyl-tRNA synthetases are a family of ubiquitous enzymes that function at an essential step in the translation of the genetic information. These enzymes are responsible for the accurate esterification of amino acids to the corresponding tRNA species. From an evolutionary point of view, this family of twenty enzymes has long been described as a class of proteins exhibiting similar catalytic functions but a puzzling structural diversity. The early studies revealed a large diversity in quaternary structures and in subunit molecular weights. In Escherichia coli, aminoacyl-tRNA synthetases have polypeptide chains ranging from 35 to 108 kDa, and are monomers, dimers or tetramers (Schimmel and Söll, 1979). Whereas these large differences argued against a unifying scheme for their structural organization, it was believed that an extensive relatedness should prevail in the aminoacyl-tRNA synthetase family. In particular, assuming that the primitive system was composed of fewer amino acids and activating enzymes, it was supposed that new synthetases arose through duplications and mutations in the genes of a restricted set of ancestral enzymes. This assumption led Orgel (1968) to ask the pertinent question: ’Is there amino acid sequence homology in the activating enzymes suggesting the course of specialization of these proteins?’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alzhanova, A.T., Fedorov, A.N., Ovchinnikov, L.P.,and Spirin, A.S., 1980, Eukaryotic aminoacyl-tRNA synthetases are RNA-binding proteins whereas prokaryotic ones are not, FEBS Lett. 120:225.

    Article  PubMed  CAS  Google Scholar 

  • Bec, G., Kerjan, P., Zha, X.D., and Waller, J.P., 1989, Valyl-tRNA synthetase from rabbit liver: purification as a heterotypic complex in association with elongation factor 1, J. Biol. Chem. 264:21131.

    PubMed  CAS  Google Scholar 

  • Bec, G., and Waller, J.P., 1989, Valyl-tRNA synthetase from rabbit liver: the enzyme derived from the high-Mr complex displays hydrophobic as well as polyanion-binding properties, J. Biol. Chem. 264:21138.

    PubMed  CAS  Google Scholar 

  • Brick, P., Bhat, T.N., and Blow, D.M., 1989, Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution, J. Mol. Biol. 208:83.

    Article  PubMed  CAS  Google Scholar 

  • Brunie, S., Zelwer, C., and Risler, J.L., 1990, Crystallographic study at 2.5 Å resolution of the interaction of methionyl-tRNA synthetase from Escherichia coli with ATP, J. Mol. Biol. 216:411.

    Article  PubMed  CAS  Google Scholar 

  • Burbaum, J.J., and Schimmel, P., 1991, Structural relationships and the classification of aminoacyltRNA synthetases, J. Biol. Chem. 266:16965.

    PubMed  CAS  Google Scholar 

  • Cerini, C., Kerjan, P., Astier, M., Gratecos, D., Mirande, M., and Sémériva, M., 1991, A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase, EMBO J. 10:4267.

    PubMed  CAS  Google Scholar 

  • Chang, P.K., and Dignam, J.D., 1990, Primary structure of alanyl-tRNA synthetase and the regulation of its mRNA levels in Bombix mori, J. Biol. Chem. 265:20898.

    PubMed  CAS  Google Scholar 

  • Cirakoglu, B., and Waller, J.P., 1985a, Leucyl-tRNA and lysyl-tRNA synthetases, derived from the high-Mr complex of sheep liver, are hydrophobic proteins, Eur. J. Biochem. 151:101.

    Article  CAS  Google Scholar 

  • Cirakoglu, B., and Waller, J.P., 1985b, Do yeast aminoacyl-tRNA synthetases exist as soluble enzymes within the cytoplasm? Eur. J. Biochem. 149:353.

    Article  CAS  Google Scholar 

  • Cirakoglu, B., and Waller, J.P., 1985c, Multiple forms of arginyl-and lysyl-tRNA synthetases in rat liver: a re-evaluation, Biochim. Biophys. Acta 829:173.

    Article  CAS  Google Scholar 

  • Cirakoglu, B., Mirande, M., and Waller, J.P., 1985, A model for the structural organization of aminoacyl-tRNA synthetases in mammalian cells, FEBS Lett. 183:185.

    Article  PubMed  CAS  Google Scholar 

  • Cruzen, M.E., and Arfin, S.M., 1991, Nucleotide and deduced amino acid sequence of human threonyl-tRNA synthetase reveals extensive homology to the Escherichia coli and yeast enzymes, J. Biol. Chem. 266:9919.

    PubMed  CAS  Google Scholar 

  • Cusack, S., Berthet-Colominas, C., Härtlein, M., Nassar, N., and Lebennan, R., 1990, A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å, Nature 347:249.

    Article  PubMed  CAS  Google Scholar 

  • Cusack, S., Härtlein, M., and Leberman, R., 1991, Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases, Nucleic Acids Res. 19:3489.

    Article  PubMed  CAS  Google Scholar 

  • Dang, C.V., Yang, D.C.H., and Pollard, T.D., 1983, Association of methionyl-tRNA synthetase with detergent-insoluble components of the rough endoplasmic reticulum, J. Cell Biol. 96:1138.

    Article  PubMed  CAS  Google Scholar 

  • Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D., 1990, Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs, Nature 347:203.

    Article  PubMed  CAS  Google Scholar 

  • Eriani, G., Prevost, D., Kern, D., Vincendon, P., Dirheimer, G., and Gangloff, J., 1991, Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae: study of its functional organisation by deletion analysis, Eur. J. Biochem. 200:337.

    Article  PubMed  CAS  Google Scholar 

  • Fett, R., and Knippers, R., 1991, The primary structure of human glutaminyl-tRNA synthetase: a highly conserved core, amino acid repeat regions, and homologies with translation elongation factors, J. Biol. Chem. 266:1448.

    PubMed  CAS  Google Scholar 

  • Garret, M., Pajot, B., Trézéguet, V., Labouesse, J., Merle, M., Gandar, J.C., Benedetto, J.P., Sallafranque, M.L., Alterio, J., Gueguen, M., Sarger, C., Labouesse, B., and Bonnet, J., 1991, A mammalian tryptophanyl-tRNA synthetase shows little homology to prokaryotic synthetases but near identity with mammalian peptide chain release factor, Biochemistry 30:7809.

    Article  PubMed  CAS  Google Scholar 

  • Godar, D.E., Godar, D.E., Garcia, V., Jacobo, A., Aebi, U., and Yang, D.C.H., 1988, Structural organization of the multienzyme complex of mammalian aminoacyl-tRNA synthetases, Biochemistry 27:6921.

    Article  PubMed  CAS  Google Scholar 

  • Hohmann, S., and Thevelein, J.M., 1992, The cell division cycle gene CDC60 encodes cytosolic leucyl-tRNA synthetase in Saccharomyces cerevisiae, Gene 120:43.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, S.L., and Campbell, R.D., 1991, Evidence that gene G7a in the human major histocompatibility complex encodes valyl-tRNA synthetase, Biochem. J. 278:809.

    PubMed  CAS  Google Scholar 

  • Hountondji, C., Dessen, P., and Blanquet, S., 1986, Sequence similarities among the family of aminoacyl-tRNA synthetases, Biochimie 68:1071.

    Article  PubMed  CAS  Google Scholar 

  • Jacobo-Molina, A., Peterson, R., and Yang, D.C.H., 1989, cDNA sequence, predicted primary structure, and evolving amphiphilic helix of human aspartyl-tRNA synthetase, J. Biol. Chem. 264:16608.

    PubMed  CAS  Google Scholar 

  • Kerjan, P., Triconnet, M., and Waller, J.P., 1992, Mammalian prolyl-tRNA synthetase corresponds to the 150 kDa subunit of the high-Mr aminoacyl-tRNA synthetase complex, Biochimie 74:195.

    Article  PubMed  CAS  Google Scholar 

  • Lazard, M., Mirande, M., and Waller, J.P., 1985, Purification and characterization of the isoleucyltRNA synthetase component from the high molecular weight complex of sheep liver: a hydrophobic metalloprotein, Biochemistry 24:5099.

    Article  PubMed  CAS  Google Scholar 

  • Lorber, B., Mejdoub, H., Reinbolt, J., Boulanger, Y., and Giegé, R., 1988, Properties of N-terminal truncated yeast aspartyl-tRNA synthetase and structural characteristics of the cleaved domain, Eur. J. Biochem. 174:155.

    Article  PubMed  CAS  Google Scholar 

  • Ludmerer, S.W., and Schimmel, P., 1987, Construction and analysis of deletions in the amino-terminal extension of glutamine tRNA synthetase of Saccharomyces cerevisiae, J. Biol. Chem. 262:10807.

    PubMed  CAS  Google Scholar 

  • Martinez, R., and Mirande, M., 1992, The polyanion-binding domain of cytoplasmic Lys-tRNA synthetase from Saccharomyces cerevisiae is not essential for cell viability, Eur. J. Biochem. 207:1.

    Article  PubMed  CAS  Google Scholar 

  • Melki, R., Kerjan, P., Waller, J.P., Carlier, M.F., and Pantaloni, D., 1991, Interaction of microtubule-associated proteins with microtubules: yeast lysyl-and valyl-tRNA synthetases and τ 218–235 synthetic peptide as model systems, Biochemistry 30:11536.

    Article  PubMed  CAS  Google Scholar 

  • Mirande, M., Cirakoglu, B., and Waller, J.P., 1983, Seven mammalian aminoacyl-tRNA synthetases associated within the same complex are functionally independent, Eur. J. Biochem. 131:163.

    Article  PubMed  CAS  Google Scholar 

  • Mirande, M., LeCorre, D., and Waller, J.P., 1985a, A complex from cultured Chinese hamster ovary cells containing nine aminoacyl-tRNA synthetases, Eur. J. Biochem. 147:281.

    Article  CAS  Google Scholar 

  • Mirande, M., LeCorre, D., Louvard, D., Reggio, H., Pailliez, J.P., and Waller, J.P., 1985b, Association of an aminoacyl-tRNA synthetase complex and of phenylalanyl-tRNA synthetase with the cytoskeletal framework fraction from mammalian cells, Exp. Cell Res. 156:91.

    Article  CAS  Google Scholar 

  • Mirande, M., and Waller, J.P., 1988, The yeast lysyl-tRNA synthetase gene: evidence for general amino acid control of its expression and domain structure of the encoded protein, J. Biol. Chem. 263:18443.

    PubMed  CAS  Google Scholar 

  • Mirande, M., and Waller, J.P., 1989, Molecular cloning and primary structure of cDNA encoding the catalytic domain of rat liver aspartyl-tRNA synthetase, J. Biol. Chem. 264:842.

    PubMed  CAS  Google Scholar 

  • Mirande, M., 1991, Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications, Prog. Nucleic Acid Res. Mol. Biol. 40:95.

    Article  PubMed  CAS  Google Scholar 

  • Mirande, M., Lazard, M., Martinez, R., and Latreille, M.T., 1992, Engineering mammalian aspartyltRNA synthetase to probe structural features mediating its association with the multisynthetase complex, Eur. J. Biochem. 203:459.

    Article  PubMed  CAS  Google Scholar 

  • Moras, D., 1992, Structural and functional relationships between aminoacyl-tRNA synthetases, Trends Biochem. Sci. 17:159.

    Article  PubMed  CAS  Google Scholar 

  • Motorin, Y.A., Wolfson, A.D., Löhr, D., Orlovsky, A.F., and Gladilin, K.L., 1991, Purification and properties of a high-molecular-mass complex between Val-tRNA synthetase and the heavy form of elongation factor 1 from mammalian cells, Eur. J. Biochem. 201:325.

    Article  PubMed  CAS  Google Scholar 

  • Nagel, G.M., and Doolittle, R.F., 1991, Evolution and relatedness in two aminoacyl-tRNA synthetase families, Proc. Natl. Acad. Sci. USA 88:8121.

    Article  PubMed  CAS  Google Scholar 

  • Negrutskii, B.S., and Deutscher, M.P., 1991, Channeling of aminoacyl-tRNA for protein synthesis in vivo, Proc. Natl. Acad. Sci. USA 88:4991.

    Article  PubMed  CAS  Google Scholar 

  • Negrutskii, B.S., and Deutscher, M.P., 1992, A sequestered pool of aminoacyl-tRNA in mammalian cells, Proc. Natl. Acad. Sci. USA 89:3601.

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, T.W., Maroney, P.A., Goodwin, R.G., Perrin, K.G., Denker, J.A., Nanduri, J., and Kazura, J.W., 1988, Cloning and characterization of a potentially protective antigen in lymphatic filariasis, Proc. Natl. Acad. Sci. USA 85:3604.

    Article  PubMed  CAS  Google Scholar 

  • Norcum, M.T., 1989, Isolation and electron microscopic characterization of a high molecular mass aminoacyl-tRNA synthetase complex from murine erythroleukemia cells, J. Biol. Chem. 264:15043.

    PubMed  CAS  Google Scholar 

  • Orgel, L.E., 1968, Evolution of the genetic apparatus, J. Mol. Biol. 38:381.

    Article  PubMed  CAS  Google Scholar 

  • Perego, R., and Del Monte, U., 1986, A stable complex from Yoshida hepatoma AH 130 containing nine aminoacyl-tRNA synthetases, Cell Biol. Int. Rep. 10:477.

    Article  Google Scholar 

  • Raben, N., Borriello, F., Amin, J., Horwitz, R., Fraser, D., and Plotz, P., 1992, Human histidyl1RNA synthetase: recognition of amino acid signature regions in class 2a aminoacyl-tRNA synthetases, Nucleic Acids Res. 20:1075.

    Article  PubMed  CAS  Google Scholar 

  • Rould, M.A., Perona, J.J., Söll, D., and Steitz, T.A., 1989, Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 Å resolution, Science 246:1135.

    Article  PubMed  CAS  Google Scholar 

  • Ruff, M., Krishnaswamy, S., Boeglin, M., Poterszman, A., Mitschler, A., Podjarny, A., Rees, B., Thierry, J.C., and Moras, D., 1991, Class II aminoacyl-tRNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsP, Science 252:1682.

    Article  PubMed  CAS  Google Scholar 

  • Ryazanov, A.G., Ovchinnikov, L.P., and Spirin, A.S., 1987, Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes, Biosystems 20:275.

    Article  PubMed  CAS  Google Scholar 

  • Sariski, V., and Yang, D.C.H., 1991, Co-purification of the aminoacyl-tRNA synthetase complex with the elongation factor eEF1, Biochem. Biophys. Res. Commun. 177:757.

    Article  Google Scholar 

  • Schimmel, P., 1987, Aminoacyl-tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs, Ann. Rev. Biochem. 56:125.

    Article  PubMed  CAS  Google Scholar 

  • Schimmel, P., and Söll, D., 1979, Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs, Ann. Rev. Biochem. 48:601.

    Article  PubMed  CAS  Google Scholar 

  • Schuler, G.D., Altschul, S.F., and Lipman, D.J., 1991, A workbench for multiple alignment construction and analysis, Proteins: Struct. Funct. Genet. 9:180.

    Article  CAS  Google Scholar 

  • Steitz, T.A., 1991, Aminoacyl-tRNA synthetases: structural aspects of evolution and tRNA recogniton, Curr. Opin. Struct. Biol. 1:139.

    Article  CAS  Google Scholar 

  • Van Damme, H.T.F., Amons, R., Janssen, G.M.C., and Möller, W., 1991, Mapping the functional domains of the eukaryotic elongation factor 1βγ, Eur. J. Biochem. 197:505.

    Article  PubMed  Google Scholar 

  • Vellekamp, G., Sihag, R.K., and Deutscher, M.P., 1985, Comparison of the complexed and free forms of rat liver arginyl-tRNA synthetase and origin of the free form, J. Biol. Chem. 260:9843.

    PubMed  CAS  Google Scholar 

  • Walter, P., Weygand-Durasevic, I., Sanni, A., Ebel, J.P., and Fasiolo, F., 1989, Deletion analysis in the amino-terminal extension of methionyl-tRNA synthetase from Saccharomyces cerevisiae shows that a small region is important for the activity and stability of the enzyme, J. Biol. Chem. 264:17126.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mirande, M. et al. (1993). The Aminoacyl-tRNA Synthetase Family: An Evolutionary View of Their Structural Organization. In: Nierhaus, K.H., Franceschi, F., Subramanian, A.R., Erdmann, V.A., Wittmann-Liebold, B. (eds) The Translational Apparatus. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2407-6_62

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2407-6_62

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6021-6

  • Online ISBN: 978-1-4615-2407-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics