Advertisement

The Functional Role of Conserved Sequences of 16S Ribosomal RNA in Protein Synthesis

  • James Ofengand
  • Andrey Bakin
  • Kelvin Nurse

Abstract

A crucial feature of all ribosomes is the conserved nature of its structural organization. This is nowhere more evident than in the secondary structure of the RNA components. Nevertheless, extensive sequence conservation, at least for the small subunit RNA (16S in prokaryotes), is found only at three single-stranded regions (Noller, 1984). One of these sequences (518–533) is in the 5’-domain while the remaining two (1394–1408; 1492–1505) are in the 3’-minor domain (Fig. 1). All three regions have been implicated in tRNA binding and other protein synthesis functions (reviewed in Noller, 1991). For example, C1400 (XL in Fig. 1) which is located in the middle of the 1394–1408 sequence was shown to be at the decoding site of the ribosome (reviewed in Ofengand, et al., 1986; 1988).

Keywords

Double Mutant Tertiary Interaction Mitochondrial Ribosome tRNA Binding Initiation Complex Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almehdi, M., Yoo, Y.S., and Schaup, H.W., 1991, Nucleic Acids Res. 19:6895.PubMedCrossRefGoogle Scholar
  2. Brimacombe, R., Atmadja, J., Stiege, W., and Schüler, D., 1988, J. Mol. Biol. 199:115.PubMedCrossRefGoogle Scholar
  3. Ciesiolka, J., Gornicki, P., and Ofengand, J., 1985, Biochemistry 24:4931.PubMedCrossRefGoogle Scholar
  4. Cunningham, P.R., Weitzmann, C., Nègre, D., Sinning, J.G., Frick, V., Nurse, K., and Ofengand, J., 1990, in “The Ribosome. Structure, Function, and Evolution”, W. Hill, A. Dahlberg, R. Garrett, P. Moore, D. Schlessinger, and J. Warner, eds., pp. 243–252, American Society for Microbiology, Washington, DC.Google Scholar
  5. Cunningham, P.R., Nurse, K., Weitzmann, C.J., Nègre, D., and Ofengand, J., 1992a, Biochemistry 31:7629.CrossRefGoogle Scholar
  6. Cunningham, P.R., Nurse, K., Bakin, A., Weitzmann, C.J., Pflumm, M., and Ofengand, J., 1992b, Biochemistry 31:in press.Google Scholar
  7. Denman, R., Weitzmann, C., Cunningham, P.R., Nègre, D., Nurse, K., Colgan, J., Pan, Y.-C., Miedel, M., and Ofengand, J., 1989, Biochemistry 28:1002.PubMedCrossRefGoogle Scholar
  8. Dontsova, O., Dokudovskaya, S., Kopylov, A., Bogdanov, A., Rinke-Appel, J., Jünke, N., and Brimacombe, R., 1992, EMBO J. 11:3105.PubMedGoogle Scholar
  9. Döring, T., Grener, B., and Brimacombe, R., 1992, Nucleic Acids Res. 20:1593.PubMedCrossRefGoogle Scholar
  10. Frank, J., Penczek, P., Grassucci, R., and Srivastava, S., 1991, J. Cell Biol. 115:597.PubMedCrossRefGoogle Scholar
  11. Gomicki, P., Nurse, K., Hellmann, W., Boublik, M., and Ofengand, J., 1984, J. Biol. Chem. 259:10493.Google Scholar
  12. Gutell, R.R., Weiser, B., Woese, C.R., and Noller, H.J., 1985, in “Nucleic Acid Research and Molecular Biology”, W.E. Cohn, and K. Moldave, eds., vol. 32, pp. 155–216, Academic Press, New York.Google Scholar
  13. Gutell, R.R., and Woese, C.R., 1990, Proc. Nail. Acad. Sci. USA 87:663.CrossRefGoogle Scholar
  14. Hausner, T.P., Geigenmüller, U., and Nierhaus, K.H., 1988, J. Biol. Chem. 263:13103.PubMedGoogle Scholar
  15. Hershey, J.W.B., 1987, in “Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology”, F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, eds., vol. 1., pp. 613–647, American Society for Microbiology, Washington, D.C.Google Scholar
  16. Krzyzosiak, W., Denman, R., Nurse, K., Hellmann, W., Boublik, M., Gehrke, C. W., Agris, P. F., and Ofengand, J., 1987, Biochemistry 26:2353.PubMedCrossRefGoogle Scholar
  17. Moazed, D., and Noller, H.F., 1989, Nature 342:142.PubMedCrossRefGoogle Scholar
  18. Moazed, D. and Noller, H.F., 1990, J. Mol. Biol. 211:135.PubMedCrossRefGoogle Scholar
  19. Nierhaus, K.H., 1990, Biochemistry 29:4997.PubMedCrossRefGoogle Scholar
  20. Noller, H.F., 1991, Ann. Rev. Biochem. 60:191.PubMedCrossRefGoogle Scholar
  21. Noller, H.F., 1984, Ann. Rev. Biochem. 53:119.PubMedCrossRefGoogle Scholar
  22. Noller, H.F., 1993, FASEB J. (in press). Google Scholar
  23. Ofengand, J., Ciesiolka, J., and Nurse, K., 1986, in “Structure and Dynamics of RNA”, P.H. van Knippenberg, and C.W. Hilbers, eds., pp. 273–287, Plenum Publishing, New York.CrossRefGoogle Scholar
  24. Ofengand, J., Denman, R., Nègre, D., Krzyzosiak, W., Nurse, K., and Colgan, J., 1988, in “Structure and Expression: I. From Proteins to Ribosomes”, R.H. Sarma, and M.H. Sarnia, eds., vol. 1, 209–228. Adenine Press, Albany NY.Google Scholar
  25. Powers, T., and Noller, H.F., 1990, Proc. Natl. Acad. Sci. USA 87:1042.PubMedCrossRefGoogle Scholar
  26. Ruusala, T., Ehrenberg, M., and Kurland, C.G., 1982, EMBO J. 1:741.PubMedGoogle Scholar
  27. Ruusala, T., Andersson, D., Ehrenberg, M., and Kurland, C.G., 1984, EMBO J. 3:2575.PubMedGoogle Scholar
  28. Schüler, D., and Brimacombe, R., 1988, EMBO J. 7:1509.PubMedGoogle Scholar
  29. Stern, S., Powers, T., Changchien, L.M., and Noller, H.F., 1989, Science 44:783.CrossRefGoogle Scholar
  30. Stern, S., Weiser, B., and Noller, H.F., 1988, J. Mol. Biol. 204:447.PubMedCrossRefGoogle Scholar
  31. Stöffler-Meilicke, M., and Stöffler, G., 1990, in “The Ribosome. Structure, Function, and Evolution” W. Hill, R. Dahlberg, P. Garett, D. Moore, D. Schlessinger, and J. Warner, eds., pp. 123–133, American Society for Microbiology, Washington DC.Google Scholar
  32. Vasiliev, V.D., Selivanova, O.M., Baranov, V.I., and Spirin, A.S., 1983, FEBS Lett.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • James Ofengand
    • 1
  • Andrey Bakin
    • 1
  • Kelvin Nurse
    • 1
  1. 1.Roche Institute of Molecular BiologyRoche Research CenterNutleyUSA

Personalised recommendations