Advertisement

Mapping the Functional Centre of the Escherichia Coli Ribosome

  • Richard Brimacombe
  • Thomas Döring
  • Barbara Greuer
  • Nicole Jünke
  • Philip Mitchell
  • Florian Müller
  • Monika Osswald
  • Jutta Rinke-Appel
  • Katrin Stade

Abstract

The principal functional components which are attached to the ribosome during the process of polypeptide chain elongation are the mRNA, two tRNA molecules (either at the A- and P-sites, or the P- and E-sites), and the nascent protein. When the two tRNAs are present at the A- and P-sites, they are tightly constrained by the concomitant requirements (i) that their respective CCA 3’-termini must be close together at the peptidyl transferase centre, in order to allow peptide bond formation to occur, and (ii) that their respective anti-codons must also be close, to enable base-pairing to take place with the appropriate adjacent codons on the mRNA. It is known from fluorescence measurements (Johnson et al, 1982; Paulsen et al, 1983) that in this situation the angle between the planes of the L-shaped tRNA molecules must be relatively small, and there are thus two basically different possible configurations for the two tRNAs; in one the angle between the tRNA planes is approximately 90° (the so-called ‘R’ configuration (Rich, 1974; Lim et al, 1992)) and in the other it is approximately 270° (the so-called ‘S’ configuration (Sundaralingam et al, 1975; Lim et al, 1992)). A tRNA molecule at the E-site is not subject to the same constraints, since - having lost its peptidyl residue - the CCA terminus of this tRNA need no longer be close to the peptidyl transferase centre. The anticodon loop of the E-site bound tRNA on the other hand either still undergoes codon-anticodon interaction (Rheinberger et al, 1986), or is at least still fairly close to its mRNA codon (Paulsen and Wintermeyer, 1986).

Keywords

tRNA Molecule Principal Functional Component Anticodon Loop Peptidyl Transferase Peptidyl Transferase Centre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bochkariov, D., and Kogon, A., 1992, Analyt. Biochem. 204:90PubMedCrossRefGoogle Scholar
  2. Branlant, C., Krol, A., Machatt, M.A., Pouyet, J., and Ebel, J.P., 1981, Nucleic Acids Res. 9:4303PubMedCrossRefGoogle Scholar
  3. Brimacombe, R., Atmadja, J., Stiege, W., and Schüler, D., 1988, J. Mol. Biol. 199:115PubMedCrossRefGoogle Scholar
  4. Brimacombe, R., Greuer, B., Mitchell, P., Osswald, M., Rinke-Appel, J., Schüler, D., and Stade, K. 1990, in “The Ribosome; Structure, Function and Evolution”, W.E. Hill, A.E. Dahlberg, R.A. Garrett, P.B. Moore, D. Schlessinger, and J.R. Warner, eds., ASM Press, Washington DC, p.93Google Scholar
  5. Brimacombe, R., 1991, Biochimie 73:927PubMedCrossRefGoogle Scholar
  6. Brimacombe, R., Mitchell, P., Osswald, M., Stade, K., and Bochkariov, D., 1993, FASEB J, in pressGoogle Scholar
  7. Capel, M.S., Kjeldgaard, M., Engelman, D.M., and Moore, P.B., 1988, J. Mol. Biol. 200:65PubMedCrossRefGoogle Scholar
  8. Carbon, P., Ehresmann, C., Ehresmann, B., and Ebel, J.P., 1979, Eur. J. Biochem. 100:399PubMedCrossRefGoogle Scholar
  9. Chen, J.K., Franke, L.A., Hixson, S.S., and Zimmermann, R.A., 1985, Biochemistry 24:4777PubMedCrossRefGoogle Scholar
  10. Dontsova, O., Kopylov, A., and Brimacombe, R., 1991, EMBO J. 10:2613PubMedGoogle Scholar
  11. Dontsova, O., Dokudovskaya, S., Kopylov, A., Bogdanov, A., Rinke-Appel, J., Jünke, N., and Brimacombe, R., 1992, EMBO J. 11:3105PubMedGoogle Scholar
  12. Döring, T., Greuer, B., and Brimacombe, R., 1991, Nucleic Acids Res. 19:3517PubMedCrossRefGoogle Scholar
  13. Döring, T., Greuer, B., and Brimacombe, R., 1992, Nucleic Acids Res. 20:1593PubMedCrossRefGoogle Scholar
  14. Frank, J., Penczek, P., Grassucci, R., and Srivastava, S., 1991, J. Cell Biol. 115:597PubMedCrossRefGoogle Scholar
  15. Hajnsdorf, E., Favre, A., and Expert-Bezançon, A., 1989, Nucleic Acids Res. 17:1475PubMedCrossRefGoogle Scholar
  16. Haselman, T., Camp, D.G., and Fox, G.E., 1989, Nucleic Acids Res. 17:2215PubMedCrossRefGoogle Scholar
  17. Johnson, A.E., Adkins, H.J., Matthews, E.A., and Cantor, C.R., 1982, J. Mol. Biol. 156:113PubMedCrossRefGoogle Scholar
  18. Lim, V., Venclovas, C., Spirin, A., Brimacombe, R., Mitchell, P., and Müller, F., 1992, Nucleic Acids Res. 20:2627PubMedCrossRefGoogle Scholar
  19. Lowary, P., Sampson, J., Milligan, J., Groebe, D., and Uhlenbeck, O.C., 1986, in “Structure and Dynamics of RNA”, P.H. Van Knippenberg, and C.W. Hilbers, eds., NATO ASI Series Vol. 110, Plenum Press, New York, p.69CrossRefGoogle Scholar
  20. Mitchell, P., Osswald, M., Schüler, D., and Brimacombe, R., 1990, Nucleic Acids Res. 18:4325PubMedCrossRefGoogle Scholar
  21. Mitchell, P., Osswald, M., and Brimacombe, R., 1992, Biochemistry 31:3004PubMedCrossRefGoogle Scholar
  22. Moazed, D., Stern, S., and Noller, H.F., 1986, J. Mol. Biol. 187:399PubMedCrossRefGoogle Scholar
  23. Moazed, D., and Noller, H.F., 1987, Nature 327:389PubMedCrossRefGoogle Scholar
  24. Moazed, D., and Noller, H.F., 1989, Cell 57:585PubMedCrossRefGoogle Scholar
  25. Moazed, D., and Noller, H.F., 1990, J. Mol. Biol. 211:135PubMedCrossRefGoogle Scholar
  26. Murgola, E.J., Hijazi, K.A., Göringer, U., and Dahlberg, A.E., 1988, Proc. Natl. Acad. Sci. USA 85:4162PubMedCrossRefGoogle Scholar
  27. Oakes, M., Scheinman, A., Atha, T., Shankweiler, G., and Lake, J.A., 1990, in “The Ribosome; Structure, Function and Evolution”, W.E. Hill, A.E. Dahlberg, R.A. Garrett, P.B. Moore, D. Schlessinger, and J.R. Warner, eds., ASM Press, Washington DC, p. 180Google Scholar
  28. Ofengand, J., Denman, R., Nurse, K., Liebman, A., Malarek, D., Focella, A., and Zenchoff, G., 1988, Methods Enzymol. 164:372PubMedCrossRefGoogle Scholar
  29. Paulsen, H., Robertson, H.J., and Wintermeyer, W., 1983, J. Mol. Biol. 167:411PubMedCrossRefGoogle Scholar
  30. Paulsen, H., and Wintermeyer, W., 1986, Biochemistry 25:2749PubMedCrossRefGoogle Scholar
  31. Podkowinski, J., and Gornicki, P., 1991, Nucleic Acids Res. 19:801PubMedCrossRefGoogle Scholar
  32. Powers, T., and Noller, H.F., 1991, EMBO J. 10:2203PubMedGoogle Scholar
  33. Prince, J.B., Taylor, B.H., Thurlow, D.L., Ofengand, J., and Zimmermann, R.A., 1982, Proc. Natl. Acad. Sci. USA 79:5450PubMedCrossRefGoogle Scholar
  34. Ramakrishnan, V., and White, S.W., 1992, Nature 358:768PubMedCrossRefGoogle Scholar
  35. Rheinberger, H.J., Sternbach, H., and Nierhaus, K.H., 1986, J. Biol. Chem. 261:9140PubMedGoogle Scholar
  36. Rich, A., 1974, in “Ribosomes”, M. Nomura, A. Tissières, and P. Lengyel, eds., Cold Spring Harbor Press, New York, p.871Google Scholar
  37. Rinke-Appel, J., Jünke, N., Stade, K., and Brimacombe, R., 1991, EMBO J. 10:2195PubMedGoogle Scholar
  38. Ryabova, L.A., Selivanova, O.M., Baranov, V.I., Vasiliev, V.D., and Spirin, A.S., 1988, FEBS Lett. 226:255PubMedCrossRefGoogle Scholar
  39. Shen, Z., and Fox, T.D, 1989, Nucleic Acids Res. 17:4535PubMedCrossRefGoogle Scholar
  40. Sigmund, C.D., Ettayebi, M., and Morgan, E.A., 1984, Nucleic Acids Res. 12:4653PubMedCrossRefGoogle Scholar
  41. Smith, J.E., Cooperman, B.S., and Mitchell, P., 1992, Biochemistry 31:10825PubMedCrossRefGoogle Scholar
  42. Sprinzl, M., Hartman, T., Weber, J., Blank, J., and Zeidler, R., 1989, Nucleic Acids Res. 17:r1CrossRefGoogle Scholar
  43. Stade, K., Rinke-Appel, J., and Brimacombe, R., 1989, Nucleic Acids Res. 17:9889PubMedCrossRefGoogle Scholar
  44. Steiner, G., Kuechler, E., and Barta, A., 1988, EMBO J. 7:3949PubMedGoogle Scholar
  45. Stern, S., Weiser, B., and Noller, H.F., 1988, J. Mol. Biol. 204:447PubMedCrossRefGoogle Scholar
  46. Stöffler-Meilicke, M., and Stöffler, G., 1990, in “The Ribosome; Structure, Function and Evolution”, W.E. Hill, A.E. Dahlberg, R.A. Garrett, P.B. Moore, D. Schlessinger, and J.R. Warner, eds., ASM press, Washington DC, p. 123Google Scholar
  47. Sundaralingam, M., Brennan, T., Yathindra, N., and Ichikawa, T., 1975, in “Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions”, M. Sundaralingam, and S.T. Rao, eds., University Park Press, Baltimore, p.101Google Scholar
  48. Tate, W., Greuer, B., and Brimacombe, R., 1990; Nucleic Acids Res. 18:6537PubMedCrossRefGoogle Scholar
  49. Vester, B., and Garrett, R.A., 1988, EMBO J. 7:3577PubMedGoogle Scholar
  50. Wower, J., Hixson, S.S., and Zimmermann, R.A., 1989, Proc. Natl. Acad. Sci. USA 86:5232PubMedCrossRefGoogle Scholar
  51. Yonath, A., Leonard, K.R., and Wittmann, H.G., 1987, Science 236:813PubMedCrossRefGoogle Scholar
  52. Yonath, A., Bennett, W., Weinstein, S., and Wittmann, H.G., 1990, in “The Ribosome; Structure, Function and Evolution”, W.E. Hill, A.E. Dahlberg, R.A. Garrett, P.B. Moore, D. Schlessinger, and J.R. Warner, eds., ASM Press, Washington DC, p.134Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Richard Brimacombe
    • 1
  • Thomas Döring
    • 1
  • Barbara Greuer
    • 1
  • Nicole Jünke
    • 1
  • Philip Mitchell
    • 1
  • Florian Müller
    • 1
  • Monika Osswald
    • 1
  • Jutta Rinke-Appel
    • 1
  • Katrin Stade
    • 1
  1. 1.Max-Planck-Institut für Molekulare GenetikAbteilung WittmannBerlin 33Germany

Personalised recommendations