Advertisement

Extension and Folding of Nascent Peptides on Ribosomes

  • Boyd Hardesty
  • O. W. Odom
  • Wieslaw Kudlicki
  • Gisela Kramer

Abstract

The ribosomal synthesis of a peptide bond takes place by transfer of the peptidyl ester of peptidyl-tRNA to the amino acid amino group of an incoming aminoacyl-tRNA. Attempts to isolate an acyl-ribosome intermediate of the kind found for many enzymecatalyzed hydrolyses or transpeptidation reactions have been unsuccessful. This has led many investigators to speculate that transpeptidation by the ribosome is brought about by an appropriate spatial orientation and alignment of the aminoacyl-tRNA and peptidyl-tRNA without the catalytic involvement of special nucleophilic groups of the large ribosomal subunit as discussed by Spirin (1986). The range of covalent derivatives other than peptides or amides that can be formed: esters (Fahnestock et al., 1970), thioesters (Gooch and Hawtrey, 1975), thioamides (Victorova et al., 1976), phosphinoamides (Tarussova et al., 1981) support this hypothesis with the implication that the peptidyl transferase reaction itself is of the SN2 type with nucleophilic substitutions through a tetrahedral intermediate. However, these considerations only serve to emphasize the importance of understanding how the 3’ ends of two tRNAs are brought precisely into reactive proximity to facilitate the reaction that by many measures is the most evolutionarily conserved and fundamental process of life, the reaction system by which genetic information encoded in nucleic acid is translated into protein.

Keywords

Fluorescence Anisotropy Large Ribosomal Subunit Peptide Bond Formation Peptidyl Transferase Peptidyl Transferase Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atherton, S., 1988, in “Light in Biology and Medicine,” Vol. 1, RH. Douglas, J. Moan, and F. Da11Acqua, eds., Plenum Press, New York, pp. 71–84.Google Scholar
  2. Bemabeu, C., and Lake, J.A., 1980, Proc. Natl. Acad. Sci. USA 79:3111–3115.Google Scholar
  3. Blobel, G., and Sabatini, D., 1970, J.Cell Biol. 45:130–145.PubMedCrossRefGoogle Scholar
  4. Chantrenne, H., 1961, in “Modern Trends in Physiological Science,” P. Alexander and Z. Bacq, eds., Pergamon Press, p. 122.Google Scholar
  5. Chou, P.Y., and Fasman, G.D., 1974, Biochemistry 13:211–222.PubMedCrossRefGoogle Scholar
  6. Creighton, T.E., 1983, “Proteins: Structures and Molecular Properties,” W.H. Freeman and Co., New York.Google Scholar
  7. Fahnestock, S., Neumann, H., Shashoua, V., and Rich A., 1970, Biochemistry 9:2477–2483.PubMedCrossRefGoogle Scholar
  8. Gooch, J., and Hawtrey, A.O., 1975, Biochem. J. 149:209–220.PubMedGoogle Scholar
  9. Hardesty, B., Culp, W., and McKeehan, W., 1969, Cold Spring Harbor Symp. Quant. Biol. 34:331–345.PubMedCrossRefGoogle Scholar
  10. Hardesty, B., Odom, O.W., and Deng, H.-Y., 1986, in “Structure, Function, and Genetics of Ribosomes,” B. Hardesty and G. Kramer, eds., Springer-Verlag, New York, pp. 495–508.CrossRefGoogle Scholar
  11. Hartman, R., Schwaner, RC., and Heymans, J., Jr., 1974, J. Mol. Biol. 90:415–429.PubMedCrossRefGoogle Scholar
  12. Jou, W.M., Haegeman, G., Ysebaert, M., and Fiers, W., 1972, Nature (London) 237:82–88.CrossRefGoogle Scholar
  13. Kolb, V.A., Kommer, A.A., and Spirin, A.S., 1987, Dokl. Akad. Nauk. SSR. 296:1497–1501.Google Scholar
  14. Kudlicki, W., Kramer, G., and Hardesty, B., 1992, Analytical Biochemistry 206, ressin p.Google Scholar
  15. Lill, R., Robertson, J.M., and Wintermeyer, W., 1984, Biochemistry 23:6710–6717.PubMedCrossRefGoogle Scholar
  16. Malkin, L.I., and Rich, A., 1967, J.Mol.Biol. 26:329–346.PubMedCrossRefGoogle Scholar
  17. Mendoza,J.A.Rogers,E.,Lorimer,G.H.,and Horowitz,P.,1991,J. Biol. Chem. 266: 13044–13049.PubMedGoogle Scholar
  18. Moazed, D., and Noller, H.F., 1989, Nature 342:142–148.PubMedCrossRefGoogle Scholar
  19. Noll, H., 1966, Science 151: 1241–1245.PubMedCrossRefGoogle Scholar
  20. Noller, H.F., Hoffarth, V., and Zimniak, L., 1992, Science 256:1416–1419.PubMedCrossRefGoogle Scholar
  21. Noller, H.F., Moazed, D., Stern, S., Powers, T., Allen, P.N., Robertson, J.M., Weiser, B., and Triman, K., 1990, in “The Ribosome: Structure, Function, & Evolution,” W.E. Hill, A. Dahlberg, RA. Garret, P.B. Moore, D. Schlessinger, and J.R. warner, eds., american society for microbiology, Washington, D.C., pp. 73–92.Google Scholar
  22. Odom, O.W., and Hardesty, B., 1987, Biochimie 69:925–938.PubMedCrossRefGoogle Scholar
  23. Odom, O.W. Picking, W.D. and Hardesty, B. 1990, Biochemistry 29:10734–10744.PubMedCrossRefGoogle Scholar
  24. Odom, O.W., Picking, W.D., Tsalkova, T., and Hardesty, B., 1991, Eur. J. Biochem.198:713–722.CrossRefGoogle Scholar
  25. Picking, W.D., Kolb, V.A., Odom, O.W., Picking, W.L., Spirin, A.S., and Hardesty, B., 1992c, submitted.Google Scholar
  26. Picking, W.D., Odom, O.W., and Hardesty, B., 1992b, Biochemistry, in press.Google Scholar
  27. Picking, W.D., Odom, O.W., Tsalkova, T., Serdyuk, I., and Hardesty, B., 1991a, J. Biol. Chem. 266:15341542.Google Scholar
  28. Picking, W.D., Picking, W.L., Odom, O.W., and Hardesty, B., 1992a, Biochemistry 31:2368–2375.CrossRefGoogle Scholar
  29. Picking, W.L., Picking, W.D., and Hardesty, B., 1991b, Biochimie 73:1101–1108.CrossRefGoogle Scholar
  30. Picking, W.L., Picking, W.D., Ma, C., and Hardesty, B., 1991c, Nucl.AcidRes. 19:5749–5754.CrossRefGoogle Scholar
  31. Rheinberger, H.-J., and Nierhaus, K.H., 1980, Biochem. Int. 1:297–303.Google Scholar
  32. Richards, F.M., 1991, Scientific American 264:54–63.PubMedCrossRefGoogle Scholar
  33. Ryabova, L.A., Selivanova, O.M., Baranov, V.I., Vasiliev, V.D., and Spirin, A.S., 1988, FEBS Letters 226:255–260.PubMedCrossRefGoogle Scholar
  34. Smith, W.P., Tai, P.-C., and Davis, B.D., 1978, Proc.Natl.Acad.Sci. U.S.A. 75:5922–5925.PubMedCrossRefGoogle Scholar
  35. Spirin, A.S., 1985, Prog. Nucl. Acid. Res. Mol. Biol. 32:75–114.CrossRefGoogle Scholar
  36. Spirin, A.S., 1986, “Ribosome Structure and Protein Biosynthesis,” Benjamin/Cummings Publishing Company, Menlo Park.Google Scholar
  37. Spirin, A.S., and Lim, V.I., 1986, in “Structure, Function, and Genetics of Ribosomes,” B. Hardesty and G. Kramer, eds., Springer-Verlag, New York, pp. 556–572.CrossRefGoogle Scholar
  38. Tarussova, N.B., Jacovleva, G.M., Victorova, L.S., Kukhanova, M.K., and Khomutov, RM., 1981, FEBS Letters 130:85–87.PubMedCrossRefGoogle Scholar
  39. Tsalkova, T., Zardeneta, G., Kudlicki, W., Kramer, G., Horowitz, P., and Hardesty, B., 1992, submitted. Valegard, K., Liljas, L., Fridborg, K., and Unge, I., 1990, Nature (London) 345:36–41.Google Scholar
  40. Victorova, L.S., Kotusov, L.S., Azhayev, A.V., Krayevsky, A.A., Kukhanova, M.K., and Gottikh, B.P., 1976, FEBS Letters 68:215–218.PubMedCrossRefGoogle Scholar
  41. Watson, J., 1964, Bull. Soc. Chim. Biol. 46:1399–1425.PubMedGoogle Scholar
  42. Yonath, A., Leonard, K.R., and Wittman’’, H.G., 1987, Science 236:813–816.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Boyd Hardesty
    • 1
  • O. W. Odom
    • 1
  • Wieslaw Kudlicki
    • 1
  • Gisela Kramer
    • 1
  1. 1.Department of Chemistry & BiochemistryThe University of Texas at AustinAustinUSA

Personalised recommendations