Translational Stop Signals: Evolution, Decoding for Protein Synthesis and Recoding for Alternative Events

  • Warren P. Tate
  • Frances M. Adamski
  • Chris M. Brown
  • Mark E. Dalphin
  • Jason P. Gray
  • Jules A. Horsfield
  • Kim K. McCaughan
  • John G. Moffat
  • Robert J. Powell
  • Kirsten M. Timms
  • Clive N. A. Trotman

Abstract

Termination or translational stopping involves a close relationship between the ribosome, the mRNA, and the polypeptide chain release factors. The discovery of an array of alternative events occurring at stop codons in the mRNA has focussed attention on how the decoding mechanism discriminates between simple ‘stop’ signals and alternative events outside the normal constraints of the genetic code (Tate and Brown, 1992). This latter phenomenon has been recently called ‘recoding’ and the signals ‘recoding signals’ (Gesteland et al., 1992). Is the normal role of the stop codon merely overriden by the recoding signals or does the stop component of such a signal contribute to a finely tuned regulation at sites where the alternative events occur? These questions demand a re-examination of how a stop signal recognition mechanism might have evolved, first for its function in translational stopping, and second for a possible role in gene regulation.

Keywords

Hydrolysis Codon Carboxyl Carbonyl Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bremer, H., and Dennis, P.P., 1987 in “Escherichia coli and Salmonella typhimurium.” F. C. Neidhart, ed., American Society for Microbiology. Washington DC.Google Scholar
  2. Bock, A., Forchhammer, K., Heider, J., Leinfelder, W., Sawers, G., Veprek, B., and Zinoni, F., 1991 Mol. Microbiol. 5:515.PubMedCrossRefGoogle Scholar
  3. Brimacombe, R. 1988 Biochemistry 27:4207.PubMedCrossRefGoogle Scholar
  4. Brimacombe, R. 1992 Biochimie 74: 319–326.PubMedCrossRefGoogle Scholar
  5. Brown, C. M., Stockwell, P. A., Trotman, C. N. A.,and Tate, W. P., 1990a Nucleic Acids Res. 18:2079.CrossRefGoogle Scholar
  6. Brown, C. M., Stockwell, P. A., Trotman, C. N. A., and Tate, W. P., 1990b Nucleic Acids Res. 18:6339.CrossRefGoogle Scholar
  7. Buwitt, U., Flohr, T., and Bottger, E.C., 1992 EMBO J. 11:489.PubMedGoogle Scholar
  8. Craigen, W. J., and Caskey, C.T., 1986 Nature 322:273.PubMedCrossRefGoogle Scholar
  9. Craigen, W.J., Cook, R.G., Tate, W.P., and Caskey, C.T., 1985 Proc. Natl. Acad. Sci. U.S.A. 82:3616.PubMedCrossRefGoogle Scholar
  10. Donly, B. C., Edgar, C. D., Adamski, F. M., and Tate, W. P., 1990 Nucleic Acids Res. 18:6517.PubMedCrossRefGoogle Scholar
  11. Dontsova, O., Dokudodovskaya, S., Kopylov, A., Bogdanov, A., Rinke-Appel J., Junke, N., and Brimacombe, R., 1991 EMBO J. 10:2613.PubMedGoogle Scholar
  12. Gesteland, R.F., Weiss, R.B, and Atkins, J.F., 1992 Science 257:1640.PubMedCrossRefGoogle Scholar
  13. Kastner, B., Trotman, C., and Tate, W. P., 1990 J. Mol. Biol. 212:241.PubMedCrossRefGoogle Scholar
  14. Kohli, J., and Grosjean, H., 1981 Mol. Gen. Genet. 182:430.PubMedCrossRefGoogle Scholar
  15. Kopelowitz, J., Hampe, C., Goldman, R., Reches, M., and Engelberg-Kulka, H., 1992 J. Mol. Biol. 225:261.PubMedCrossRefGoogle Scholar
  16. Lee, C. C., Craigen, W. J., Muzny, D. M., Harlow, E., and Caskey, C. T., 1990 Proc. Natl. Acad. Sci. U.S.A 8: 3508.CrossRefGoogle Scholar
  17. Lee, C. C., Timms, K. M., Trotman, C. N., and Tate, W. P., 1987 J. Biol. Chem. 262:3548.PubMedGoogle Scholar
  18. Lehman, N., and Jukes, T. H., 1988 J. Theor. Biol. 135:203.PubMedCrossRefGoogle Scholar
  19. Moffat, J. G., Timms, K. M., Trotman, C. N. A., and Tate, W. P., 1991 Biochimie 73:1113.PubMedCrossRefGoogle Scholar
  20. Murgola, E. J., Hijazi, K. A., Goringer, H. U., and Dahlberg, A. E., 1988 Proc. Natl. Acad. Sci. U. S. A. 85:4162.PubMedCrossRefGoogle Scholar
  21. Mikuni, O., Kawakami, K., and Nakamura, Y., 1991 Biochimie 73:1509.PubMedCrossRefGoogle Scholar
  22. Noller, H.F., Hoffarth, H., and Zimniak, L., 1992 Science 256:1416.PubMedCrossRefGoogle Scholar
  23. Oba, T., Andachi, Y., Muto, A.,and Osawa, S., 1991 Proc. Natl. Acad. Sci. U. S. A. 88:921.PubMedCrossRefGoogle Scholar
  24. Osawa, S., Jukes, T.H., Watanabe, K., Muto, A., 1992 Microbiol. Rev. 56:229.PubMedGoogle Scholar
  25. Pedersen, W. T., and Curran, J. F. 1991 J. Mol. Biol. 219:231.PubMedCrossRefGoogle Scholar
  26. Prescott, C.D., Krabben, L., and Nierhaus, K.H., 1991 Nucleic Acids Res. 19:5281.PubMedCrossRefGoogle Scholar
  27. Prescott, C.D., and Kornau, H-C., 1992 Nucleic Acids Res. 20:1567.PubMedCrossRefGoogle Scholar
  28. Pel, H.J., Rep, M., and Grivell, L.A., 1992 Nucleic Acids Res. 20:4423.PubMedCrossRefGoogle Scholar
  29. Rubin, B. Y., Anderson, S. L., Xing, L., Powell, R. J., and Tate, W. P., 1991 J. Biol. Chem. 266:24245.PubMedGoogle Scholar
  30. Shen, Z., and Fox, T.D., 1989 Nucleic Acids Res. 17:4535.PubMedCrossRefGoogle Scholar
  31. Stem, S., Powers, T., Changchien, L.-M., and Noller, H. F., 1989 Science 244:783.CrossRefGoogle Scholar
  32. Tate, W., Greuer, B., & Brimacombe, R., 1990 Nucleic Acids Res. 18:6537.PubMedCrossRefGoogle Scholar
  33. Tate, W.P., and Brown, C.M., 1992 Biochemistry 31:2443.PubMedCrossRefGoogle Scholar
  34. Weiss, R.B., Dunn, D.M., Dahlberg, A.L., Atkins, J.F., and Gesteland, R.F., 1988 EMBO J. 7:1503.PubMedGoogle Scholar
  35. Wolin, S. L., & Walter, P., 1988 EMBO J. 7:3559.PubMedGoogle Scholar
  36. Yano, R., & Yura, T., 1989 J. Bacteriol. 171:1712.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Warren P. Tate
    • 1
  • Frances M. Adamski
    • 1
  • Chris M. Brown
    • 1
  • Mark E. Dalphin
    • 1
  • Jason P. Gray
    • 1
  • Jules A. Horsfield
    • 1
  • Kim K. McCaughan
    • 1
  • John G. Moffat
    • 1
  • Robert J. Powell
    • 1
  • Kirsten M. Timms
    • 1
  • Clive N. A. Trotman
    • 1
  1. 1.Department of Biochemistry and Centre for Gene ResearchUniversity of OtagoDunedinNew Zealand

Personalised recommendations