Insertion of Proteins into Membranes A Survey

  • Vincent Géli
  • Hélène Bénédetti
Part of the Subcellular Biochemistry book series (SCBI, volume 22)


Integral membrane proteins are defined as proteins that span the membrane at least once. Until now, hundreds of coding sequences have been obtained for integral membrane proteins, but by contrast only a limited amount of information about the atomic structure of detergent solubilized proteins has been reported. So far, four kinds of structures have been observed for integral membrane proteins whose structures have been determined either by X-ray crystallography or electron crystallography. The structures known with high resolution are the photo-synthetic reaction centers, the porins, bacteriorhodopsin, and the light harvesting complex II. Determination of these three-dimensional (3-D) structures has provided the information upon which the extensively used prediction methods for the arrangement of membrane proteins have been based. In the absence of three-dimensional structure information, computational methods based on the analysis and comparison of amino-acid sequences have been used to predict the topology of membrane proteins. These methods give a two-dimensional picture of the arrangement of the protein in the membrane. In the meantime, new experimental procedures have been developed, increasing the possibilities to probe membrane topology, and thus the validity of the computational methods.


Membrane Protein Integral Membrane Protein Endoplasmic Reticulum Membrane Diphtheria Toxin Protein Translocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G. A., and Rose, J. K., 1985, Structural requirements of a membrane-spanning domain for protein anchoring and cell surface transport, Cell 41:1007–1015.PubMedCrossRefGoogle Scholar
  2. Ahrem, B., Hoffschulted, H. K., and Müller, M., 1989, In vitro membrane assembly of a polytopic, transmembrane protein results in an enzymatically active conformation, J. Cell Biol. 108:1637–1646.PubMedCrossRefGoogle Scholar
  3. Akita, M., Sasaki, S., Matsuyama, S., and Mizushima, S., 1990, SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli, J. Biol. Chem. 265:8164–8169.PubMedGoogle Scholar
  4. Akiyama, Y., and Ito, K., 1987, Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli, EMBO J. 6:3456–3470.Google Scholar
  5. Akiyama, Y., and Ito, K., 1989, Export of Escherichia coli alkaline Phosphatase attached to an integral membrane protein, SecY, J. Biol. Chem. 264:437–442.PubMedGoogle Scholar
  6. Allen, J. P., Feher, G., Yeates, T. O., Rees, D. C., and Deisenhofer, J., 1986, Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by X-ray diffraction, Proc. Natl. Acad. Sci. USA 83:8589–8593.PubMedCrossRefGoogle Scholar
  7. Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C., 1987, Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors, Proc. Natl. Acad. Sci. USA 84:5730–5734.PubMedCrossRefGoogle Scholar
  8. Altman, E., Kumamoto, C. A., and Emr, S. D., 1991, Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli, EMBO J. 10:239–245.PubMedGoogle Scholar
  9. Amaya, Y., and Nakano, A., 1991, SRH1 protein, the yeast homologue of the 54kDa subunit of signal recognition particle, is involved in ER translocation of secretory proteins, FEBS Lett. 283:325–328.PubMedCrossRefGoogle Scholar
  10. Andersson, H., and von Heijne, G., 1991, a 30-residue-long “export initiation domain” adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli, Proc. Natl. Acad. Sci. USA 88:9751–9755.PubMedCrossRefGoogle Scholar
  11. Andersson, H., and von Heijne, G., 1993, Sec-dependent and Sec-independent assembly of E. coli inner membrane proteins: The topological rules depend on chain length, EMBO J. 12:683–691.PubMedGoogle Scholar
  12. Andrews, D. W., Young, J. C., Mirels, L. F., and Czarnota, G. J. 1992, The role of the N-region in signal sequence and signal-anchor function, J. Bio. Chem. 267:7761–7769.Google Scholar
  13. Arkowitz, R. A., Joly, J. C., and Wickner, W., 1993, Translocation can drive the unfolding of a preprotein domain, EMBO J. 12:243–253.PubMedGoogle Scholar
  14. Audigier, Y., Friedlander, M., and Blobel, G., 1987, Multiple topogenic sequences in bovine opsin, Proc. Natl. Acad. Sci. USA 84:5783–5787.PubMedCrossRefGoogle Scholar
  15. Baker, K. N., Machman, N., Jackson, M., and Holland, I. B., 1987, Role of SecA and SecY in protein export as revealed by studies of TonA assembly into the other membrane of Escherichia coli, J. Mol. Biol. 198:6932–703.CrossRefGoogle Scholar
  16. Baker, K. P., Schaniel, A., Vestweber, D., and Schatz, G., 1990, A yeast mitochondrial outer membrane protein essential for protein import and cell viability, Nature 348:605–609.PubMedCrossRefGoogle Scholar
  17. Baker, K. P., and Schatz, G., 1991, Mitochondrial proteins essential for viability mediate protein import into yeast mitochondria, Nature 349:205–208.PubMedCrossRefGoogle Scholar
  18. Bazzo, R., Tappin, M. J., Pastore, A., Harvey, T. S., Carver, J. A., and Campbell, I. D., 1988, The structure of melittin: A 1H study in methanol, Eur. J. Biochem. 173:139–146.PubMedCrossRefGoogle Scholar
  19. Bedwell, D. M., Stobel, S. A., Yun, K., Jongeward, G. D., and Emr, S. D., 1989, Sequence and structural requirements of a mitochondrial protein import signal defined by saturation cassette mutagenesis, Mol. Cell Biol. 9:1014–1025.PubMedGoogle Scholar
  20. Beltzer, J. P., Fiedler, K., Fuhrer, C., Geffen, I., Handschin, C., Wessels, H. P., and Spiess, M., 1991, Charged residues are major determinants of the transmembrane orientation of a signal-anchor” sequence, J. Biol. Chem. 266:973–978.PubMedGoogle Scholar
  21. Bénédetti, H., Lazdunski, C., and Lloubés, R., 1991, Protein import into Escherichia coli: Colicins A and El interact with a component of their translocation system, EMBO J. 10:1989–1995.PubMedGoogle Scholar
  22. Bénédetti, H., Lloubés, R., Lazdunski, C., and Letellier, L., 1992, Colicin A unfolds during its translocation in Escherichia coli cells and spans the whole cell envelope when its pore has formed, EMBO J. 11:441–447.PubMedGoogle Scholar
  23. Benz, R., and Bauer, K., 1988, Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria: Review on bacterial porins, Eur. J. Biochem. 176:1–19.PubMedCrossRefGoogle Scholar
  24. Bibi, E., and Kaback, H. R., 1990, In vivo expression of the lacY gene in two segments leads to functional 1ac permease, Proc. Natl. Acad. Sci. USA 87:4325–4329.PubMedCrossRefGoogle Scholar
  25. Bibi, E., Verner, G., Chang, C-Y., and Kaback, H. R., 1991, Organization and stability of a polytopic membrane protein: Deletion analysis of the lactose permease of Escherichia coli, Proc. Natl. Acad. Sci. USA 88:7271–7275.PubMedCrossRefGoogle Scholar
  26. Bieker, K. L., and Silhavy, T. J., 1990, The genetics of protein secretion in E. coli, Trends Genet. Sci. 6:329–334.CrossRefGoogle Scholar
  27. Blobel, G., 1980, Intracellular protein topogenesis, Proc Natl. Acad. Sci. USA 77:1496–1501.PubMedCrossRefGoogle Scholar
  28. Blobel, G., and Sabatini, D.D., 1970, Controlled proteolysis of nascent Polypeptides in rat liver cell fractions: Location of the Polypeptides within ribosomes, J. Cell Biol. 45:130–145.PubMedCrossRefGoogle Scholar
  29. Bochkareva, E. S., Lissin, N. M., and Girshovich, A. S., 1988, Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein, Nature 336:254–257.PubMedCrossRefGoogle Scholar
  30. Bole, D. G., Hendershot, L. M., and Keaney, J. F., 1986, Post-translational association of immu-noglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secretory hybridomas, J. Cell Biol. 102:1558–1566.PubMedCrossRefGoogle Scholar
  31. Borgese, N., Mok, W., Kreibich, G., and Sabatini, D. D., 1974, Ribosomal-membrane interaction: In vitro binding of ribosomes to microsomal membranes, J. Mol. Biol. 88:559–580.PubMedCrossRefGoogle Scholar
  32. Bormann, B. J., Knowles, W. J., and Marchesi, V. T., 1989, Synthetic Polypeptides mimic the assembly of transmembrane glycoproteins, J. Biol. Chem. 264:4033–4037.PubMedGoogle Scholar
  33. Bormann, B. J., and Engelman, D. M., 1992, Intramembrane helix-helix association in oligomeriza-tion and transmembrane signaling, Ann. Rev. Biophys. Biomol. Struct. 21:223–242.CrossRefGoogle Scholar
  34. Bosch, D., Scholten, M., Verhagen, C., and Tommassen, J. 1989, The role of the carboxy-terminal membrane-spanning fragment in the biogenesis of Escherichia coli K12 outer membrane protein PhoE, Mol. Gen. Genet. 216:144–148.PubMedCrossRefGoogle Scholar
  35. Boyd, D., and Beckwith, J., 1989, Positively charged amino-acid residues can act as topogenic determinants in membrane proteins, Proc. Natl. Acad. Sci. USA 86:9446–9450.PubMedCrossRefGoogle Scholar
  36. Boyd, D., and Beckwith, J., 1990, The role of charged amino acids in the localization of secreted and membrane proteins, Cell 62:1031–1033.PubMedCrossRefGoogle Scholar
  37. Boyd, D., Manoil, C., and Beckwith, J., 1987, Determinants of membrane protein topology, Proc. Natl. Acad. Sci. USA 84:8525–8529.PubMedCrossRefGoogle Scholar
  38. Brodsky, J. L., Hamamoto, S., Feeldheim, D., and Schekman, R., 1993, Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for Bip and cytosolic hsc70, J. Cell Biol. 120:95–102.PubMedCrossRefGoogle Scholar
  39. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M., and Wickner, W., 1990, The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation, Cell 62:649–657.PubMedCrossRefGoogle Scholar
  40. Butler, P. J. G., and Kühlbrandt, W., 1988, Determination of the aggregate size in detergent solution of the light-harvesting chlorophyll a/b-protein complex from chloroplast membranes, Proc. Natl. Acad. Sci. USA 85:3797–3801.PubMedCrossRefGoogle Scholar
  41. Cabelli, R. J., Chen, L., Tai, P. C., and Oliver, D. B., 1988, SecA protein is required for secretory protein translocation into E. coli membrane vesicles, Cell 55:683–692.PubMedCrossRefGoogle Scholar
  42. Calamia, J., and Manoil, C., 1990, Lac permease of Escherichia coli: Topology and sequence elements promoting membrane insertion, Proc. Natl. Acad. Sci. USA 87:4937–4941.PubMedCrossRefGoogle Scholar
  43. Calamia, J., and Manoil, C., 1992, Membrane protein spanning segments as export signals, J. Mol. Biol. 224:539–543.PubMedCrossRefGoogle Scholar
  44. Caulfield, M. P., Duong, L. T., and Rosenblatt, M., 1986, Demonstration of post-translational secretion of human placental lactogen by a mammalian in vitro translation system, J. Biol. Chem. 261:10953–10956.PubMedGoogle Scholar
  45. Chang, C. H., Tiede, D., Tang, J., Smith, U., Norris, J. R., and Schiffer, M., 1986, Structure of Rhodopseudomonas sphaeroids R-26 reaction center, FEBS Lett. 205:82–86.PubMedCrossRefGoogle Scholar
  46. Chao, C. C. K., Bird, P., Gething, M. J., and Sambrook, J., 1987, Post-translational translocation of influenza virus hemagglutinin across microsomal membranes, Mol. Cell Biol. 7:3842–3845.PubMedGoogle Scholar
  47. Chen, L., and Tai, P., 1985, ATP is essential for protein translocation into Escherichia coli membrane vesicles, Proc. Natl. Acad. Sci. USA 82:4384–4388.PubMedCrossRefGoogle Scholar
  48. Cheng, M. Y., Haiti, F. U., Martin, J., Pollock, R. A., Kalousek, F., Neupert, W., Hallberg, E. M., Hallberg, R. L., and Horwich, A. L., 1989, Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria, Nature 337:620–625.PubMedCrossRefGoogle Scholar
  49. Chirico, W. J., Waters, M. G., and Blobel, G., 1988, 70 K heat-shock-related proteins stimulate protein translocation into microsomes, Nature 332:805–810.PubMedCrossRefGoogle Scholar
  50. Choe, S., Bennett, M. J., Fujii, G., Curmi, P. M. G., Kantardjieff, K. A., Collier, R. J., and Eisenberg, D., 1992, The crystal structure of diphtheria toxin, Nature 357:216–222.PubMedCrossRefGoogle Scholar
  51. Cobet, W., Mollay, C., Müller, G., and Zimmermann, R., 1989, Export of honeybee prepromelittin in E. coli depends on the membrane potential but does not depend on proteins SecA and SecY, J. Biol. Chem. 264:10169–10176.PubMedGoogle Scholar
  52. Collier, D. N., Bankaitis, V. A., Weiss, J. B., and Bassford, P. J., Jr., 1988, The antifolding activity of SecB promotes the export of the E. coli maltose-binding protein, Cell 53:273–283.PubMedCrossRefGoogle Scholar
  53. Collins, O. G., and Gilmore, R., 1991, Ribosome binding to the endoplasmic reticulum: A 180 kD protein identified by crosslinking to membrane bound ribosomes is not required for ribosome binding activity, J. Cell Biol. 114:639–649.PubMedCrossRefGoogle Scholar
  54. Connolly, T., and Gilmore, R., 1989, The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent Polypeptide, Cell 57:599–610.PubMedCrossRefGoogle Scholar
  55. Cosson, P., Lankford, S. P., Bonifacio, J. S., and Klausner, R. D., 1991, Membrane protein association by potential intermembrane charge pairs, Nature 351:414–416.PubMedCrossRefGoogle Scholar
  56. Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., Jansonius, J. N., and Rosenbush, J. P., 1993, Crystal structures explain functional properties of two E. coli porins, Nature 358:727–733.CrossRefGoogle Scholar
  57. Craig, A. E., Kramer, J., Shilling, J., Werner-Washburne, M., Holmes, S., et al., 1989, SSCI, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein, Mol. Cell Biol. 9:3000–3008.PubMedGoogle Scholar
  58. Cramer, W. A., Cohen, F. S., Merrill, A. R., and Song, H. Y., 1990, Structure and dynamics of the colicin El channel, Mol. Microbiol. 4:519–526.PubMedCrossRefGoogle Scholar
  59. Dalbey, R. E., 1990, Positively charged residues are important determinants of membrane-protein topology, Trends Biochem. Sci 15:253–257.PubMedCrossRefGoogle Scholar
  60. Dalbey, R. E., and Wickner, W., 1986, The role of the polar carboxy-terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane, J. Biol. Chem. 261:13844–13849.PubMedGoogle Scholar
  61. Dalbey, R. E., and Wickner, W., 1987, Leader peptidase of Escherichia coli: Critical role of a small domain in membrane assembly, Science 235:783–787.PubMedCrossRefGoogle Scholar
  62. Dalbey, R. E., Kuhn, A., and Wickner, W., 1987, The internal signal sequence of Escherichia coli leader peptidase is necessary, but not sufficient, for its rapid membrane assembly, J. Biol. Chem. 262:13241–13245.PubMedGoogle Scholar
  63. Daniels, C. J., Bole, D. G., Quay, S. C., and Oxender, D. L., 1981, Role for membrane potential in the secretion of protein into the periplasm of Escherichia coli, Proc. Natl. Acad. Sci. USA 78:5396–5400.PubMedCrossRefGoogle Scholar
  64. Davis, N. G., and Model, P., 1985, An artificial anchor domain: Hydrophobicity suffices to stop transfer, Cell 41:607–614.PubMedCrossRefGoogle Scholar
  65. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., 1984, X-ray structure analysis of a membrane protein complex: Electron density at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis, J. Mol. Biol. 180:385–398.PubMedCrossRefGoogle Scholar
  66. Deisenhofer, J., and Michel, H., 1989, The photosynthetic reaction center from the purple bacterium Rhdopseudomonas viridis, Science 245:1463–1473.PubMedCrossRefGoogle Scholar
  67. Derman, A. I., Puziss, J. W., Bassford, P. J., Jr., and Beckwith, J., 1993, A signal sequence is not required for protein export in prllA mutants of Escherichia coli, EMBO J. 12:879–888.PubMedGoogle Scholar
  68. Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A., and Schekman, R., 1988, A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor Polypeptides, Nature 332:800–805.PubMedCrossRefGoogle Scholar
  69. Deshaies, R. J., Sanders, S. L., Feldheim, D. A., and Schekman, R., 1991, Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multi-subunit complex, Nature 349:806–808.PubMedCrossRefGoogle Scholar
  70. Deshaies, R., and Schekman, R., 1989, Sec62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum, J. Cell Biol. 109:2653–2664.PubMedCrossRefGoogle Scholar
  71. de Vitry, C., Diner, B. A., and Popot, J. L., 1991, Photosystem II particles from Chlamydomonas reinhardtii purification, molecular weight, small subunit composition and protein phosphoryla-tion, J. Biol. Chem. 266:16614–16620.PubMedGoogle Scholar
  72. de Vrije, T., 1989, Studies on the role of phospholipids in the translocation process of outer membrane protein PhoE across Eschedrichia coli inner membranes, Ph.D. thesis, University of Utrecht.Google Scholar
  73. de Vrije, G. J., de Swart, R. L., Dowhan, W., Tommassen, J., and de Kruijff, B., 1988, Phospha-tidylglycerol is involved in protein translocation across Escherichia coli inner membranes, Nature 334:173–175.PubMedCrossRefGoogle Scholar
  74. Dorner, A. J., Bole, D. G., and Kaufman, R. J., 1987, The relationship of N-linked glycosylation and heavy chain-binding protein association with the secretion of glycoproteins, J. Cell Biol. 105:2665–2674.PubMedCrossRefGoogle Scholar
  75. Driessen, A. J. M., and Wickner, W., 1990, Solubilization and functional reconstitution of the protein-translocation enzymes of Escherichia coli, Proc. Natl. Acad. Sci. USA 87:3107–3111.PubMedCrossRefGoogle Scholar
  76. Driessen, A. J. M., and Wickner, W., 1991, Proton transfer is rate-limiting for translocation of precursor proteins by the Escherichia coli translocase, Proc. Natl. Acad. Sci. USA 88:2471–2475.PubMedCrossRefGoogle Scholar
  77. Driessen, A. J. M., 1992, Precursor protein translocation by the Escherichia coli translocase is directed by the protonmotive force, EMBO J. 11:847–853.PubMedGoogle Scholar
  78. Dumont, M. E., and Richards, F. M., 1984, Insertion of apocytochrome c into lipid vesicles, J. Biol. Chem. 259:4147–4156.PubMedGoogle Scholar
  79. Dupuy, B., Taha, M. K., Pugsley, A. P., and Marshall, C.A., 1991, Neisseria gonorrhoeae prepilin export studied in Escherichia coli, J. Bacteriol. 173:7589–7598.PubMedGoogle Scholar
  80. Ehrmann, M., and Beckwith, J., 1991, Proper insertion of a complex membrane protein in the absence of its amino-terminal export signal, J. Biol. Chem. 266:16530–16534.PubMedGoogle Scholar
  81. Eilers, M., Endo, T., and Schatz, G., 1989, Adriamycin, a drug interacting with acidic phospholipids, blocks import of precursor proteins by isolated yeast mitochondria, J. Biol. Chem. 264:2945–2950.PubMedGoogle Scholar
  82. Eilers, M., Hwang, S., and Schatz, G., 1988, Unfolding and refolding of a purified precursor protein during import into isolated mitochondria, EMBO J. 7:1139–1145.PubMedGoogle Scholar
  83. Eilers, M., Oppliger, W., and Schatz, G., 1987, Both ATP and an energized inner membrane are required to import a purified precursor protein into mitochondria, EMBO J. 6:1073–1077.PubMedGoogle Scholar
  84. Eisele, J. L., and Rosenbusch, J. P., 1990, In vitro folding and oligomerization of a membrane protein: Transition of bacterial porin from random coil to native conformation, J. Biol. Chem. 265:10217–10220.PubMedGoogle Scholar
  85. Ellis, R. J., and van der Vies, S. M., 1991, Molecular chaperones, Annu. Rev. Biochem. 60:321–347.PubMedCrossRefGoogle Scholar
  86. Endo, T., Shimada, I., Roise, D., and Inagaki, F., 1989a, N-terminal half of a mitochondrial presequence peptide takes a helical conformation when bound to dodecylphosphocholine micelles—a proton magnetic resonance study, J. Biochem. 106:396–400.PubMedGoogle Scholar
  87. Endo, T., Eilers, M., and Schatz, R. G., 1989b, Binding of tightly folder artificial mitochondrial precursor protein to the mitochondrial membrane involves a lipid conformational change, J. Biol. Chem. 264:2951–2956.PubMedGoogle Scholar
  88. Enequist, H. G., Hirst, T. R., Hardy, S. J. S., Harayama, S., and Randall, L. L., 1981, Energy is required for maturation of exported proteins in Escherichia coli, Eur. J. Biochem. 116:227–233.PubMedCrossRefGoogle Scholar
  89. Engelman, D. M., and Steitz, T. A., 1981, The spontaneous insertion of proteins into and across membranes, the helical hairpin hypothesis, Cell 23:411–422.PubMedCrossRefGoogle Scholar
  90. Feldheim, D., Rothblatt, J., and Schekman, R., 1992, Topology and functional domains of Sec63p, an ER membrane protein required for secretory protein translocation, Mol. Cell Biol. 12:3288–3296.PubMedGoogle Scholar
  91. Fikes, J. D., and Bassford, P. J., 1987, Export of unprocessed precursor maltose-binding protein to the periplasm of Escherichia coli cells, J. Bacteriol. 169:2352–2359.PubMedGoogle Scholar
  92. Flynn, G. C., Pohl, J., Flocco, M. T., and Rothman, J. E., 1991, Peptide-binding specificity of the molecular chaperone bip, Nature 353:726–728.PubMedCrossRefGoogle Scholar
  93. Froshauer, S., Green, G. N., Boyd, D., McGovern, K., and Beckwith, J., 1988, Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli, J. Mol. Biol. 200:501–511.PubMedCrossRefGoogle Scholar
  94. Gallusser, A., and Kuhn, A., 1990, Initial steps in protein membrane insertion: Bacteriophage M13 procoat protein binds to the membrane surface by electrostatic interaction, EMBO J. 9:2723–2729.PubMedGoogle Scholar
  95. Garcia, P. D., and Walter, P., 1988, Full-length prepro-α-factor can be translocated across the mammalian microsomal membrane only if translation has not terminated, J. Cell Biol. 106:1043–1048.PubMedCrossRefGoogle Scholar
  96. Gardell, C., Benson, S., Hunt, J., Michaelis, S., and Beckwith, J., 1987, secD, a new gene involved in protein export in Escherichia coli, J. Bacteriol. 169:1286–1290.Google Scholar
  97. Garoff, H., 1985, Using recombinant DNA techniques to study protein targetin in the eukaryotic cell, Annu. Rev. Cell Biol. 1:403–445.PubMedCrossRefGoogle Scholar
  98. Géli, V., Baty, D., and Lazdunski, C., 1988, Use of a foreign epitope as a “tag” for the localization of minor proteins within a cell: The case of the immunity protein to colicin A, Proc. Natl. Acad. Sci. USA 85:689–693.PubMedCrossRefGoogle Scholar
  99. Géli, V., Baty, D., Pattus, F. P., and Lazdunski, C., 1989, Topology and function of the integral membrane protein conferring immunity to colicin A, Mol. Microbiol. 3:679–687.PubMedCrossRefGoogle Scholar
  100. Géli, V., and Glick, B., 1990, Mitochondrial protein import, J. Bioenerg. Biomembr. 22:725–751.PubMedGoogle Scholar
  101. Géli, V., Yang, M., Suda, K., Lustig, A., and Schatz, G., 1990, The MAS-encoded processing protease of yeast mitochondria: Overproduction and characterization of its two nonidentical subunits, J. Biol. Chem. 265:19216–19222.PubMedGoogle Scholar
  102. Géli, V., Koorengevel, M. C., Demel, R. A., Lazdunski, C., and Killian, A., 1992, Acidic interaction of the colicin A pore-forming domain with model membranes of E. coli lipids results in a large perturbation of acyl chain order and stabilization of the bilayer, Biochemistry 31:11089–11094.PubMedCrossRefGoogle Scholar
  103. Geller, B. L., Movva, N. R., and Wickner, W., 1986, Both ATP and the electrochemical potential are required for optimal assembly of pro-OmpA into Escherichia coli inner membrane vesicles, Proc. Natl. Acad. Sci. USA 83:4219–4222.PubMedCrossRefGoogle Scholar
  104. Geller, B. L., and Green, H. M., 1989, Translocation of proOmpA across inner membrane vesicles of Escherichia coli occurs in two consecutive energetically distinct steps, J. Biol. Chem. 264:16465–16469.PubMedGoogle Scholar
  105. Gething, M. J., McCammon, K., and Sambrook, J., 1986, Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport, Cell 46: 939–950.PubMedCrossRefGoogle Scholar
  106. Gething, H. J., and Sambrook, J., 1992, Protein folding in the cell, Nature 355:33–45.PubMedCrossRefGoogle Scholar
  107. Gilmore, R., and Blobel, G., 1983, Transient involvement of signal recognition particle and its reception in the microsomal membrane prior to protein translocation, Cell 35:677–685.PubMedCrossRefGoogle Scholar
  108. Gilmore, R., and Blobel, G., 1985, Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants, Cell 42:497–505.PubMedCrossRefGoogle Scholar
  109. Gilmore, R., Blobel, G., and Walter, P., 1982, Protein translocation across the endoplasmic reticu-lum. I: Detection in the microsomal membrane of a receptor for the signal recognition particle, J. Cell Biol. 95:463–469.PubMedCrossRefGoogle Scholar
  110. Glick, B., and Schatz, G., 1991, Import of proteins into mitochondria, Annu. Rev. Genet. 25:21–44.PubMedCrossRefGoogle Scholar
  111. Glick, B., Brandt, A., Cunningham, K., Muller, S., Hallberg, R., and Schatz, G., 1992, Cyto-chrome c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism, Cell 69:809–822.PubMedCrossRefGoogle Scholar
  112. Gonzàlez-Manas, J. M., Lakey, J. H., and Pattus, F., 1992, Brominated phospholipids as a tool for monitoring the membrane insertion of colicin A, Biochemistry 31:7294–7300.PubMedCrossRefGoogle Scholar
  113. Görlich, D., Prehn, S., Hartmann, E., Herz, J., Otto, A., Kraft, R., Wiedmann, M., Knespel, S., Dobberstein, B., and Rapoport, T. A., 1990, The signal sequence receptor has a second subunit and is part of a translocation complex in the endoplasmic reticulum as probed by bifunctional reagents, J. Cell Biol. 111:2283–2294.PubMedCrossRefGoogle Scholar
  114. Görlich, D., Hartmann, E., Prehn, S., and Rapoport, T. A., 1992a, A protein of the endoplasmic reticulum involved early in Polypeptide translocation, Nature 357:47–52.PubMedCrossRefGoogle Scholar
  115. Görlich, D., Prehn, S., Hartmann, E., Kalies, K. U., and Rapoport, T. A., 1992b, A mammalian homolog of Sec61p and SecYp is associated with ribosomes and nascent Polypeptides during translocation, Cell 71:489–503.PubMedCrossRefGoogle Scholar
  116. Haeuptle, M. T., Flint, N., Gough, N. M., and Dobberstein, B., 1989, A tripartite structure of the signals that determine protein insertion into the endoplasmic reticulum membrane, J. Cell Biol. 108:1227–1236.PubMedCrossRefGoogle Scholar
  117. Hann, B. C., Poritz, M. A., and Walter, P., 1989, Saccharomyces cerevisiae and Schizosac-charomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth, J. Cell Biol. 109:3223–3230.PubMedCrossRefGoogle Scholar
  118. Hann, B. C., and Walter, P., 1991, The signal recognition particle in S. cerevisiae, Cell 67:131–144.PubMedCrossRefGoogle Scholar
  119. Hansen, W., Garcia, P. D., and Walter, P., 1986, In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent post-translational translocation of the prepro-α-factor, Cell 45:397–406.PubMedCrossRefGoogle Scholar
  120. Haiti, F. U., Pfanner, N., Nicholson, D. W., and Neupert, W., 1989, Mitochondrial protein import, Biochem. Biophys. Acta 998:1–45.CrossRefGoogle Scholar
  121. Hartl, F. U., and Neupert, W., 1990, Protein sorting to mitochondria: Evolutionary conservations of folding and assembly, Science 247:930–938.PubMedCrossRefGoogle Scholar
  122. Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P., and Wickner, W., 1990, The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane, Cell 63:269–279.PubMedCrossRefGoogle Scholar
  123. Hartmann, D. J., Hoogenraad, N. J., Condron, R., and Hoj, P. B., 1992, Identification of a mammalian 10-kDa heat shock protein, a mitochondrial chaperonin 10 homologue essential for assisted folding of trimeric Ornithine transcarbamoylase in vitro, Proc. Natl. Acad. Sci. USA 89:3394–3398.CrossRefGoogle Scholar
  124. Hartmann, E., Rapoport, T. A., and Lodish, H. F., 1989a, Predicting the orientation of membrane-spanning proteins, Proc. Natl. Acad. Sci. USA 86:5786–5790.PubMedCrossRefGoogle Scholar
  125. Hartmann, E., Wiedmann, M., and Rapoport, T. A., 1989b, A membrane component of the endoplasmic reticulum that may be essential for protein translocation, EMBO J. 8:2225–2229.PubMedGoogle Scholar
  126. Heinemeyer, W., Alt, J., and Herrmann, R. G., 1984, Nucleotide sequence of the clustered genes for apocytochrome b6 and subunit 4 of the cytochrome b/f complex in the spinach plastid chromosome, Curr. Genet. 8:543–549.CrossRefGoogle Scholar
  127. Henderson, R., and Unwin, P. N. T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature 257:28–32.PubMedCrossRefGoogle Scholar
  128. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, E., Beckmann, E., and Downing, K. H., 1990, Model for the structure of bacteriorhodopsin based on light-resolution electron cryomicro-scopy, J. Mol. Biol. 213:899–929.PubMedCrossRefGoogle Scholar
  129. Hendrick, J. P., and Wickner, W., 1991, SecA protein needs both acidic phospholipids and SecY/E protein for functional high-affinity binding to the Escherichia coli plasma membrane, J. Biol. Chem. 266:24596–24600.PubMedGoogle Scholar
  130. Henry, G. D., and Sykes, B.D., 1990, Detergent solubilized M13 coat protein exists as an asymmetric dimer: Observation of individual monomers by 15N, 13C and 1H nuclear magnetic resonance spectroscopy, J. Mol. Biol. 212:11–14.PubMedCrossRefGoogle Scholar
  131. High, S., Görlich, D., Wiedmann, M., Rapoport, T. A., and Dobberstein, B., 1991, The identification of proteins in the proximity of signal-anchor sequences during their targeting to and insertion into the membrane of the ER, J. Cell Biol. 113:35–44.PubMedCrossRefGoogle Scholar
  132. Hines, V., Grandt, A., Griffiths, G., Horstmann, H., Brütsch, H., and Schatz, G., 1990, Protein import into yeast mitochondria is accelerated by the outer membrane protein MAS70, EMBO J. 9:3191–3200.PubMedGoogle Scholar
  133. Hortsch, M., Avossa, D., and Meyer, D. I., 1986, Characterization of secretory protein translocation: Ribosome-membrane interaction in endoplasmic reticulum, J. Cell Biol. 103:241–253.PubMedCrossRefGoogle Scholar
  134. Hortsch, M., Labeit, S., and Meyer, D. I., 1988, Complete cDNA sequence coding for human docking protein, Nucleic Acids Res. 16:361–362.PubMedCrossRefGoogle Scholar
  135. Huang, K. S., Bayley, H., Liao, M. J., London, E., and Khorana, H. G., 1981, Refolding of an integral membrane protein: Denaturation, renaturation, and reconstitution of intact bacte-riorhodpsin and two proteolytic fragments, J. Biol. Chem. 256:3802–3809.PubMedGoogle Scholar
  136. Hwang, S., Jascur, T., Vestweber, D., Pon, L., and Schatz, G., 1989, Disrupted yeast mitochondria can import precursor proteins directly through their inner membrane, J. Cell Biol. 109:487–493.PubMedCrossRefGoogle Scholar
  137. Hwang, S., and Schatz, G., 1989, Translocation of protein across mitochondrial inner membrane, but not into the outer membrane, requires necleoside triphosphates in matrix, Proc. Natl. Acad. Sci. USA 86:8432–8436.PubMedCrossRefGoogle Scholar
  138. Ibrahimi, I. M., Cutler, D., Stueber, D., and Bujard, H,, 1986, Determinant for protein translocation across mammalian endoplasmic reticulum: Membrane insertion of truncated and full-length prelysozyme molecules, Eur. J. Biochem. 155:571–576.PubMedCrossRefGoogle Scholar
  139. Ito, K., and Akyama, Y., 1991, In vivo analysis of integration of membrane proteins in Escherichia coli, Mol. Microbiol. 5:2243–2253.PubMedCrossRefGoogle Scholar
  140. Jap, B. K., 1989, Molecular design of PhoE porin and its functional consequences, J. Mol. Biol. 205:407–419.PubMedCrossRefGoogle Scholar
  141. Jennings, M. L., 1989, Topography of membrane proteins, Annu, Rev. Biochem. 58:999–1027.CrossRefGoogle Scholar
  142. Joly, J. C., and Wickner, W., 1993, The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipds, EMBO J. 12:255–263.PubMedGoogle Scholar
  143. Jordi, W., 1990, The molecular mechanism of import of the precursor protein apocytorhrome c into mitochondria, Ph.D. thesis, University of Utrecht.Google Scholar
  144. Kaback, H. R., Bibi, E., and Roepe, P., 1990, β-galactoside transport in E. coli: A functional dissection of 1ac permease, Trends Biochem. Sci. 15:309–314.PubMedCrossRefGoogle Scholar
  145. Kaiser, C. A., Preuss, D., Grisafi, P., and Botstein, D., 1987, Many random sequences functionally replace the secretion signal sequence of yeast invertase, Science 235:312–317.PubMedCrossRefGoogle Scholar
  146. Kallas, T., Spiller, S., and Malkin, R., 1988f, Characterization of two operons encoding the cyto-chrome b6-f complex of the cyanobacterium Nostoc PCC 7906, J. Biol. Chem. 263:14334–14342.PubMedGoogle Scholar
  147. Kang, P. J., Ostermann, J., Shilling, J., Neupert, W., Craig, E. A., and Pfanner, N., 1990, Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins., Nature 348:137–142.PubMedCrossRefGoogle Scholar
  148. Kellaris, K. V., Bowen, S., and Gilmore, R., 1991, ER translocation intermediates are adjacent to a non-glycosylated 34 kD integral membrane protein, J. Cell Biol. 114:21–33.PubMedCrossRefGoogle Scholar
  149. Kelleher, D. J., Kreibich, G., and Gilmore, R., 1992, Oligosaccharytransferase activity is associated with a protein complex composed of Ribophorins I and II and a 48kd protein, Cell 69:55–65.PubMedCrossRefGoogle Scholar
  150. Kiebler, M., Pfaller, R., Sollner, T., Griffiths, G., Horstmann, H., Pfanner, N., and Neupert, W., 1990, Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor protein, Nature 348:610–616.PubMedCrossRefGoogle Scholar
  151. Killian, J. A., de Jong, A. M. P., Bijvelt, J., Verkleij, A. J., and de Kruiff, B., 1990, Induction of non-bilayer lipid structures by functional signal peptides, EMBO J. 9:815–819.PubMedGoogle Scholar
  152. Kimura, E., Akita, M., Matsuyama, S., and Mizushima, S., 1991, Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli, J. Biol. Chern. 266:6600–6606.Google Scholar
  153. Klose, M., Schwart, H., Maclntyre, S., Frendl, R., Eschbach, M. L., and Henning, U., 1988, Internal deletions in the gene for an Escherichia coli outer membrane protein define an area possibly important for recognition of the outer membrane by this Polypeptide, J. Biol. Chem. 263:13291–13296.PubMedGoogle Scholar
  154. Kobilka, B., Kobilka, T., Daniel, K., Regan, J., Caron, M., and Lefkowitz, R., 1988, Chimeric αx2, β2-adrenergic receptors: Delineation of domains involved in effector coupling and ligand binding specificity, Science 240:1310–1316.PubMedCrossRefGoogle Scholar
  155. Koll, H., Guiard, B., Rassow, J., Ostermann, J., Horwich, A. L., Neupert, W., and Haiti, F. U., 1992, Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space, Cell 68:1163–1175.PubMedCrossRefGoogle Scholar
  156. Kozutsumi, Y., Segal, M., Normington, K., Gething, M-J., and Sambrook, J., 1988, The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins, Nature 332:462–464.PubMedCrossRefGoogle Scholar
  157. Kreibich, G., Ulrich, B. L., and Sabatini, D. D., 1978a, Proteins of rough microsomal membranes related to ribosome binding: Identification of ribophorins I and II, membrane proteins characteristic of rough microsomes, J. Cell Biol. 77:464–487.PubMedCrossRefGoogle Scholar
  158. Kreibich, G., Freienstein, C. M., Pereyra, B. N., Ulrich, B. L., and Sabatini, D. D., 1978b, Proteins of rough microsomal membranes related to ribosome binding: Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding sites, J. Cell Biol. 77:488–506.PubMedCrossRefGoogle Scholar
  159. Krieg, U. C., Johnson, A. E., and Walter, P., 1989, Protein translocation across the endoplasmic reticulum membrane: Identification by photocrosslinking of the 39-kD integral membrane gly-coproteih as part of a putative translocation tunnel, J. Cell Biol. 109:2033–2043.PubMedCrossRefGoogle Scholar
  160. Krieg, U. C., Walter, P., and Johnson, A. E., 1986, Photocrosslinking of the signal sequence of nascent preprolactin to the 54 kilodalton Polypeptide of the signal recognition particle, Proc. Natl. Acad. Sci. USA 83:8604–8608.PubMedCrossRefGoogle Scholar
  161. Kuhn, A., 1987, Bacteriophage M13 procoat proteins inserts into the plasma membrane as a loop structure, Science 238:1413–1415.PubMedCrossRefGoogle Scholar
  162. Kuhn, A., 1988, Alterations in the extracellular domain of M13 procoat protein make its membrane insertion dependent on SecA and SecY, Eur. J. Biochem. 177:261–271.CrossRefGoogle Scholar
  163. Kuhn, A., Kreil, G., and Wickner, W., 1986, Both hydrophobic domains of M13 procoat are required to initiate membrane insertion, EMBO J. 5:3681–3685.PubMedGoogle Scholar
  164. Kuhn, A., Kreil, G., and Wickner, W., 1987, Recombinant forms of M13 procoat with an OmpA leader sequence or a large carboxy-terminal extension retain their independence of SecY function, EMBO J. 6:501–505.PubMedGoogle Scholar
  165. Kühlbrandt, W., 1988, Three-dimensional crystallization of membrane proteins, Rev. Biophys, 21:429–477.CrossRefGoogle Scholar
  166. Kühlbrandt, W., and Wang, D. N., 1991, Three-dimensional structure of plant light-harvesting complex determined by electron crystallography, Nature 350:130–134.PubMedCrossRefGoogle Scholar
  167. Kumamoto, C. A., 1989, Escherichia coli SecB protein associates with exported protein precursors in vivo, Proc. Nad. Acad. Sci. USA 86:5320–5324.CrossRefGoogle Scholar
  168. Kumamoto, C. A., and Beckwith, J., 1983, Mutations in a new genee, SecB, cause defective protein localization in Escherichia coli, J. Bacteriol. 154:253–260.PubMedGoogle Scholar
  169. Kurzchalia, T. V., Wiedmann, M., Girshowich, A. S., Bochkareva, E. S., Bielka, H., and Rap-oport, T. A., 1986, The signal sequence of nascent preprolactin interacts with the 54 K polypep-tide of the signal recognition particle, Nature 320:634–636.PubMedCrossRefGoogle Scholar
  170. Kusakawa, N., Yura, T., Uequichi, C., Akiyama, Y., and Ito, K., 1989, Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli, EMBO J. 8:3517–3521.Google Scholar
  171. Kusters, R., Dowhan, W., and de Kruijff, B., 1991, Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes, J. Biol. Chem. 266:8659–8662.PubMedGoogle Scholar
  172. Lakey, J., Massote, D., Heitz, F., Dasseux, J. L., Faucon, J. F., Parker, M. W., and Pattus, F., 1990, Membrane insertion of the pore-forming domain of colicin A, Eur. J. Biochem. 196:599–607.CrossRefGoogle Scholar
  173. Laminet, A. A., Ziegelhoffer, T., Georgopoulos, C., and Plückthun, A., 1990, The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the β-lactamase precursor, EMBO J. 9:2315–2319.PubMedGoogle Scholar
  174. Lauffer, L., Garcia, P. B., Harkins, R. N., Coussens, L., Ullrich, A., and Walter, P., 1985, Topology of signal recognition particle receptor in endoplasmic reticulum membrane, Nature 318:334–338.PubMedCrossRefGoogle Scholar
  175. Laws, J. K., and Dalbey, R. E., 1989, Positive charges in the cytoplasmic domain of Escherichia coli leader peptidase prevent an apolar domain from functioning as a signal, EMBO J. 8:2095–2099.PubMedGoogle Scholar
  176. Lazdunski, C., Baty, D., Géli, V., Cavard, D., Morion, J., Lloubès, R., Howard, P., Knibiehler, M., Chartier, M., Varenne, S., Frenette, M., Dasseux, J. L., and Pattus, F., 1988, The membrane channel-forming colicin A: Synthesis, secretion, structure, action and immunity, Biochem. Biophys. Acta 947:445–464.PubMedCrossRefGoogle Scholar
  177. Lear, J. D., Wassermann, Z. R., and Degrado, W. F., 1988, Synthetic amphiphilic peptide models for protein ion channels, Science 1177-1181.Google Scholar
  178. Lecker, S., Lill, R., Ziegelhofer, T., Bassford, P. J. J., Kumamoto, C. A., and Wickner, W., 1989, Three pure chaperone proteins of Escherichia coli, SecB trigger factor, and GroEL, form soluble complexes with precursor proteins in vivo, EMBO J. 8:2703–2709.PubMedGoogle Scholar
  179. Lemire, B. D., Frankhauser, C., Baker, A., and Schatz, G., 1989, The mitochondrial targeting function of randomly generated peptide sequences correlates with predicted helical am-phiphilicity, J. Biol. Chem. 264:20206–20215.PubMedGoogle Scholar
  180. Lemmon, M. A., Flanagan, J. M., Hunt, J. F., Adair, B. D., Bormann, B. J., Dempsey, C. E., and Engelman, D. M., 1992, Glycophorin A dimerization is driven by specific interactions between transmembrane α-helices, J. Biol. Chem. 267:7683–7689.PubMedGoogle Scholar
  181. Letellier, L., 1992, Bacteriocin and bacteriophage channels in prokaryotes in Alkali Cation Transport in Prokaryotes (E. Bakker, ed.) CRC Press, Boca Raton, Florida, pp. 359–376.Google Scholar
  182. Li, P., Beckwith, J., and Inouye, H., 1988, Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli, Proc. Natl. Acad. Sci. USA 85:7685–7689.PubMedCrossRefGoogle Scholar
  183. Li, J., Carroll, J., and Ellar, D. J., 1991, Crystal structure of insectiditial δ-endotoxin from Bacillus thuringiensis at 2.5 ü resolution, Nature 353:815–821.PubMedCrossRefGoogle Scholar
  184. Liao, M. J., London, E., and Khorana, H. G., 1983, Regeneration of native bacteriorhodopsin from two chymotryptic fragments, J. Biol. Chem. 258:9949–9955.PubMedGoogle Scholar
  185. Lill, R., Cunningham, K., Brundage, L., Ito, K., Oliver, D., and Wickner, W., 1989, SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli, EMBO J. 8:961–966.PubMedGoogle Scholar
  186. Lill, R., Dowhan, W., and Wickner, W., 1990, The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins, Cell 60:271–280.PubMedCrossRefGoogle Scholar
  187. London, E., 1992, Diphtheria toxin: Membrane interaction and membrane translocation, Biochem. Biophys. Acta 113:25–51.Google Scholar
  188. Maclntyre, S., Freudl, R., Eschbach, M. L., and Henning, U., 1988, An artificial hydrophobic sequence functions as either an anchor or a signal sequence at only one of two proteins within the Escherichia coli outer membrane protein OmpA, J. Biol. Chem. 263:19053–19059.Google Scholar
  189. Manning-Krieg, U.C., Scherer, P. E., and Schatz, G., 1991, Sequential action of mitochondrial chaperones in protein import into the matrix, EMBO J. 10:3273–3280.PubMedGoogle Scholar
  190. Manoil, C., and Beckwith, J., 1986, A genetic approach to analyzing membrane protein topology, Science 233:1403–1408.PubMedCrossRefGoogle Scholar
  191. Manolios, N., Bonifacino, J. S., and Klausner, R. S., 1990, Transmembrane helical interactions and the assembly of the T-cell receptor complex, Science 249:274–277.PubMedCrossRefGoogle Scholar
  192. Marcantonio, E. E., Amar-Costesec, A., and Kreibich, G., 1984, Segregation of the Polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes: Rat liver microsomal subfractions contain equimolar amounts of ribophorins and ribosomes, J. Cell Biol. 99:2254–2259.PubMedCrossRefGoogle Scholar
  193. Martinez, M. C., Lazdunski, C., and Pattus, F., 1983, Isolation, molecular and functional properties of the C-terminal domain of colicin A, EMBO J. 2:1501–1507.PubMedGoogle Scholar
  194. Matsuyama, S. E., Fujita, Y., and Mizushima, S., 1992, SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli, EMBO J. 12:265–270.Google Scholar
  195. McGovern, K., Ehrmann, M., and Beckwith, J., 1991, Decoding signals for membrane protein assembly using alkaline Phosphatase fusions, EMBO J. 10:2773–2782.PubMedGoogle Scholar
  196. McGovern, K., and Beckwith, J., 1991, Membrane insertion of the Escherichia coli MalF protein in cells with impaired secretion machinery, J. Biol. Chem. 266:20870–20876.PubMedGoogle Scholar
  197. McMullin, T. W., and Hallberg, R. L., 1988, A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene, Mol. Cell Biol. 8:371–380.PubMedGoogle Scholar
  198. Merrill, A. R., and Cramer, W. A., 1990, Identification of a voltage-responsive segment of the potential-gated colicin El ion channel, Biochemistry 29:8529–8534.PubMedCrossRefGoogle Scholar
  199. Meyer, D. E., 1991, Protein translocation into the endoplasmic reticulum: A light at the end of the tunnel, Trends Cell Biol. 1:154–159.PubMedCrossRefGoogle Scholar
  200. Migliaccio, G., Nicchitta, C. V., and Blobel, G., 1992, The signal sequence receptor, unlike the signal recognition particle receptor, is not essential for protein translocation, J. Cell Biol. 117:15–25.PubMedCrossRefGoogle Scholar
  201. Moskaug, J. O., Sletten, K., Sandvig, K., and Olnes, S., 1989, Translocation of diphtheria toxin A-fragment to the cytosol: Role of the site of interfragment cleavage, J. Biol. Chem. 264:15709–15713.PubMedGoogle Scholar
  202. Mueckler, M., and Lodish, H. F., 1986a, Post-translational insertion of a fragment of the glucose transporter into microsomes requires phosphoanhydride bond cleavage, Nature 322:549–552.PubMedCrossRefGoogle Scholar
  203. Mueckler, M., and Lodish, H. F., 1986b, The human glucose transporter can insert post-translationally into microsomes, Cell 44:629–637.PubMedCrossRefGoogle Scholar
  204. Müller, G., and Zimmermann, R., 1987, Import of honeybee prepromelittin into the endoplasmic reticulum: Structural basis for independence of SRP and docking protein, EMBO J. 6:2099–2107.PubMedGoogle Scholar
  205. Müller, G., and Zimmermann, R., 1988, Import of honeybee prepromelittin into the endoplasmic reticulum: Energy requirements for membrane insertion, EMBO J. 7:639–648.PubMedGoogle Scholar
  206. Müller, M., 1992, Proteolysis in protein important export: Signal peptide processing in eu-and prokaryotes, Experentia 48:118–129.CrossRefGoogle Scholar
  207. Müller, M., and Blobel, G., 1984, In vitro translocation of bacterial proteins across the plasma membrane of Escherichia coli, Proc. Natl. Acad. Sci. USA 81:7421–7425.PubMedCrossRefGoogle Scholar
  208. Müller, M., Fisher, R. P., Rienhöfer-Schweer, A., and Hoffschulte, H. K., 1987, DCCD inhibits protein translocation into plasma membrane vesicles from Escherichia coli at two different steps, EMBO J. 6:3855–3861.PubMedGoogle Scholar
  209. Munro, S., and Pelham, H. R. B., 1986, An hsp70-like protein in the ER: Identity with the 78 kD glucose regulated protein and immunoglobulin heavy chain binding protein, Cell 46:291–300.PubMedCrossRefGoogle Scholar
  210. Müsch, A., Wiedmann, M., and Rapoport, T. A., 1992, Yeast sec proteins interact with Polypeptides traversing the endoplasmic reticulum membrane, Cell 69:343–352.PubMedCrossRefGoogle Scholar
  211. Nabedryk, E., Garavito, R. M., and Breton, J., 1988, The orientation of β-sheets in porin: A polarized fourier transform infared spectroscopic investigation, Biophys. J. 53:671–676.PubMedCrossRefGoogle Scholar
  212. Nestel, U., Wacker, T., Waitzik, D., Weckesser, J., Kreutz, W., and Weite, W., 1989, Crystallization and preliminary X-ray analysis of porin from Rhodobacter capsulatus, FEBS Lett. 242:405–408.PubMedCrossRefGoogle Scholar
  213. Newman, M. J., Foster, D. C., Wilson, T. H., and Kaback, H. R., 1981, Purification and reconstitution of functional lactose carrier from Escherichia coli, J. Biol. Chem. 256:11804–11808.PubMedGoogle Scholar
  214. Nikaïdo, H., and Vaara, M., 1985, Molecular basis of bacterial outer membrane permeability, Microbiol. Rev. 49:1–32.PubMedGoogle Scholar
  215. Nilsson, I. M., and von Heijne, G., 1990, Fine-tuning the topology of a polytopic membrane protein: Role of positively and negatively charged amino acids, Cells 62:1135–1141.CrossRefGoogle Scholar
  216. Nishiyama, K., Mizushima, S., and Tokuda, H., 1992, The carboxyl-terminal region of SecE interacts with SecY and is functional in the reconstitution of protein translocation activity in Escherichia coli, J. Biol. Chem. 267:7170–7176.PubMedGoogle Scholar
  217. Nunn, D., and Lory, S., 1991, Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase, Proc. Natl. Acad. Sci. USA 88:3281–3285.PubMedCrossRefGoogle Scholar
  218. Nunnari, J. M., Zimmerman, O. L., Ogg, S. C., and Walter, P., 1991, Characterization of the rough endoplasmic reticulum ribosome binding activity, Nature 352:638–640.PubMedCrossRefGoogle Scholar
  219. Oesterhelt, D., and Stoeckenius, W., 1973, Functions of a new photoreceptor membrane, Proc. Natl. Acad. Sci. USA 70:2853–2857.PubMedCrossRefGoogle Scholar
  220. Oiki, S., Danho, W., and Montai, M., 1988, Channel protein engineering: Synthetic 22-mer peptide from the primary structure of the voltage-sensitive sodium channel forms ionic channels in lipid bilayers, Proc. Natl. Acad. Sci. USA 85:2392–2397.Google Scholar
  221. Oliver, D. B., and Beckwith, J., 1982, Identification of a new gene (secA) and gene product involved •in the secretion of envelope proteins in Escherichia coli, J. Bacteriol. 150:686–691.PubMedGoogle Scholar
  222. Ooi, C. E., and Weiss, J., 1992, Bidirectional movement of a nascent polypetide across microsomal membranes reveals requirements for vectorial translocation of proteins, Cell 71:87–96.PubMedCrossRefGoogle Scholar
  223. Osterman, J., Horwich, A. L., Neupert, W., and Hartl, F. U., 1989, Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis, Nature 341:125–130.CrossRefGoogle Scholar
  224. Parker, M. W., Pattus, F., Tucker, A. D., and Tsernoglou, D., 1989, Structure of the membrane-pore-forming fragment of colicin A, Nature 337:93–96.PubMedCrossRefGoogle Scholar
  225. Parker, M. W., Tucker, A. D., Tsernoglou, D., and Pattus, F., 1990, Insights into membrane insertion based on studies of colicins, Trends Biochem. Sci. 15:126–129.PubMedCrossRefGoogle Scholar
  226. Pattus, F., Massotte, D., Wiulmsen, H. U., Lakey, J., Tsernoglou, D., Tucker, A., and Parker, M., 1990, Colicins: Prokaryotic killer pores, Experientia 46:180–192.PubMedGoogle Scholar
  227. Pelham, H. R. B., 1986, Speculations on the functions of the major heat shock and glucose-regulated proteins, Cell 46:959–961.PubMedCrossRefGoogle Scholar
  228. Perara, E., Rothman, R. E., and Lingappa, V. R., 1986, Uncoupling translocation from translation: Implications for transport of proteins across membranes, Science 232:348–352.PubMedCrossRefGoogle Scholar
  229. Pfanner, N., Hartl, F. U., Guiard, B., and Neupert, W., 1987a, Mitochondrial precursor proteins are imported through a hydrophilic membrane environment, Eur. J. Biochem. 169:289–293.PubMedCrossRefGoogle Scholar
  230. Pfanner, N., Tropschug, M., and Neupert, W., 1987b, Mitochondrial protein import: Nucleoside triphosphates are involved in conferring import-competence to precursors, Cell 49:815–823.PubMedCrossRefGoogle Scholar
  231. Pfanner, N., Rassow, J., van der Klei, I., and Neupert, W., 1992, A dynamic model of the mitochondrial protein import machinery, Cell 68:999–1002.PubMedCrossRefGoogle Scholar
  232. Phillips, G., and Silhavey, T. J., 1990, Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli, Nature 344:882–884.PubMedCrossRefGoogle Scholar
  233. Popot, J. L., and de Vitry, C, 1990, On the microassembly of integral membrane proteins, Annu. Rev. Biophys. Chem. 19:369–403.CrossRefGoogle Scholar
  234. Popot, J. L., and Engelman, D. M., 1990, Membrane protein folding and oligomerization: The two-stage model, Biochemistry 29:4031–4033.PubMedCrossRefGoogle Scholar
  235. Popot, J. L., Gerchman, S. E., and Engelman, D. M., 1987, Refolding of bacteriorhodopsin in lipid bilayers: A thermodynamically controlled two-stage process, J. Mol. Biol. 198:655–676.PubMedCrossRefGoogle Scholar
  236. Popot, J. L., Trewhella, J., and Engelman, D. M., 1986, Reformation of crystalline purple membrane from purified bacteriorhodpsin fragments, EMBO J. 5:3039–3044.PubMedGoogle Scholar
  237. Popot, J. L., de Vitry, C., and Atteia, A., 1993, Folding and assembly of integral membrane proteins: An introduction, in Membrane Protein Structure: Experimental Approaches (S. H. White, ed.), Oxford University Press, in press.Google Scholar
  238. Randall, L. L., Topping, T. B., and Hardy, S. J. S., 1990, No specific recognition of leader peptide by SecB, a chaperone involved in protein export, Science 248:860–863.PubMedCrossRefGoogle Scholar
  239. Reading, D. S., Hallberg, R. L., and Meyers, A. M., 1989, Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor, Nature 337:655–659.PubMedCrossRefGoogle Scholar
  240. Rothblatt, J. A., Deshaies, R. J., Sanders, S. L., Daum, G., and Schekman, R., 1989, Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast, J. Cell Biol. 109:2641–2652.PubMedCrossRefGoogle Scholar
  241. Rothblatt, J. A., and Meyer, D. I., 1986, Secretion in yeast: Translocation and glycosylation of prepro-α-factor in vitro can occur via ATP-dependent post-translational mechanism, EMBO J. 5:1031–1036.PubMedGoogle Scholar
  242. Rothman, R. E., Andrews, D. W., Calayag, M. C., and Lingappa, V. R., 1988, Construction of defined polytopic integral transmembrane proteins: The role of signal and stop transfer sequence permutations, J. Biol. Chem. 263:10470–10480.PubMedGoogle Scholar
  243. Saier, M. H., Jr., Werner, P. K., and Muller, M., 1989, Insertion of proteins into bacterial membranes: Mechanisms, characteristics and comparisons with the eukaryotic process, Microbiol. Rev. 53:333–366.PubMedGoogle Scholar
  244. Sanders, S. L., Whitfield, K. M., Vogel, J. P., Rose, M. D., and Schekman, R. W., 1992, Sec61p and BIP directly facilitate Polypeptide translocation into the ER, Cell 69:353–365.PubMedCrossRefGoogle Scholar
  245. Sass, H. J., Büldt, G., Beckmann, E., Zemlin, F., van Heel, M., Zeitler, E., Rosenbusch, J. P., Dorset, D. L., and Massalski, A, 1989, Densely packed β-structure at the protein-lipid interface of porin is revealed by higher-resolution cryo-electron microscopy, J. Mol. Biol. 209:171–175.PubMedCrossRefGoogle Scholar
  246. Savitz, A. J., and Meyer, D. I., 1990, Identification of a ribosome receptor in the rough endoplasmic reticulum, Nature 346:540–544.PubMedCrossRefGoogle Scholar
  247. Schatz, P., Bieker, K., Otteman, K., Silhavy, T. J., and Beckwith, J., 1991, One of three trans-membrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery, EMBO J. 10:1749–1757.PubMedGoogle Scholar
  248. Schatz, P. J., Riggs, P. D., Jacq, A., Fath, M. J., and Beckwith, J., 1989, The SecE gene encodes an integral membrane protein required for protein export in Escherichia coli, Genes Dev. 3:1035–1044.PubMedCrossRefGoogle Scholar
  249. Schatz, P. J., and Beckwith, J., 1990, Genetic analysis of protein export in Escherichia coli, Annu. Rev. Genet. 24:215–248.PubMedCrossRefGoogle Scholar
  250. Scherer, P. E., Krieg, U. C., Hwang, S. T., Vestweber, D., and Schatz, G., 1990, A precursor protein partly translocated into yeast mitochondria is bound to a 70 kd mitochondrial stress protein, EMBO J. 9:4310–4322.Google Scholar
  251. Scherer, P. E., Manning-Krieg, U. C., Jenö, P., Schatz, G., and Horst, M., 1992, Identification of a 45-kDa protein at the protein import site of the yeast mitochondrial inner membrane, Proc. Natl. Acad. Sci. USA 89:11930–11934.PubMedCrossRefGoogle Scholar
  252. Schiebel, E., Driessen, A. J. M., Haiti, F. U., and Wickner, W., 1991, ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase, Cell 64:927–939.PubMedCrossRefGoogle Scholar
  253. Schiebel, E., and Wickner, W., 1992, Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane, J. Biol. Chem. 267:7505–7510.PubMedGoogle Scholar
  254. Schiffer, M., Chang, C. H., and Stevens, F. J., 1992, The functions of trytophan residues in membrane proteins, Protein Eng. 5:213–214.PubMedCrossRefGoogle Scholar
  255. Schlenstedt, G., and Zimmermann, R., 1987, Import of frog prepropetide Gla into microsomes requires ATP but doe snot involve docking protein or ribosomes, EMBO J. 6:699–703.PubMedGoogle Scholar
  256. Schlenstedt, G., Gudrundsson, G. H., Boman, H. G., and Zimmermann, R., 1990, A large presecre-tory protein translocates both cotranslationally, using signal recognition particle and ribosome, and post-translationally, without these ribonucleoparticles, when synthesized in the presence of mammalian microsomes, J. Biol. Chem. 265:13960–13968.PubMedGoogle Scholar
  257. Schleyer, M., and Neupert, W., 1985, Transport of proteins into mitochondria: Translocation intermediates spanning contact sites between outer and inner membranes, Cell 43:339–350.PubMedCrossRefGoogle Scholar
  258. Shiba, K., Ito, K., Yura, T., and Ceretti, D. P., 1984, A defined mutation in the protein export gene within the spc ribosomal protein Operon of Escherichia coli: Isolation and characterization of a new temperature-sensitive secY mutant, EMBO J. 631-635.Google Scholar
  259. Siefermann-Harms, D., 1985, Carotenoids in photosynthesis: location in photosynthetic membranes and light harvesting function, Biochem. Biophys. Acta 811:325–355.CrossRefGoogle Scholar
  260. Siegel, V., and Walter, P., 1988, The affinity of signal recognition particle for presecretory proteins is dependent on nascent chain length, EMBO J. 7:1769–1775.PubMedGoogle Scholar
  261. Simon, S. M., and Blobel, G., 1991, A protein-conducting channel in the endoplasmic reticulum, Cell 65:371–380.PubMedCrossRefGoogle Scholar
  262. Simon, S. M., and Blobel, G., 1992, Signal peptides open protein-conducting channels in E. coli, Cell 69:677–684.PubMedCrossRefGoogle Scholar
  263. Simon, S. M., Peskin, C. S., and Oster, G. F., 1992, What drives the translocation of proteins? Proc. Natl. Acad. Sci. USA 89:3770–3777.PubMedCrossRefGoogle Scholar
  264. Singer, S. J., 1971, The molecular organization of membranes, in Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 145–222, Academic Press, New York.Google Scholar
  265. Singer, S. J., 1976, The fluid mosaic model of membrane structure, in The Structure of Biological Membranes (S. Abrahamsson and I. Passcher, eds.), pp. 443–461, Plenum Press, New York.Google Scholar
  266. Singer, S. J., 1990, The structure and insertion of integral proteins in membranes, Annu. Rev. Cell Biol. 6:247–296.PubMedCrossRefGoogle Scholar
  267. Skowyra, D., Geogopoulos, C., and Zyuck, M., 1990, The E. coli DnaK gene product, the HSP70 homolog, can reactivate heat-inactive RNA Polymerase in an ATP hydrolysis-dependent manner, Cell 62:939–944.PubMedCrossRefGoogle Scholar
  268. Slatin, S. L., 1988, Colicin El in planar lipid bilayers, Int. J. Biochem. 20:737–744.PubMedCrossRefGoogle Scholar
  269. Smith, R., Thomas, D. E., Separovic, F., Atkins, A. R., and Cornell, B. A., 1989, Determination of the structure of a membrane-incorporated ion channel: Solid state nuclear magnetic resonance studies of gramicidin A, Biophys. J. 56:307–314.PubMedCrossRefGoogle Scholar
  270. Söllner, T., Griffiths, G., Pfaller, R., and Neupert, W., 1989, MOM19, an import receptor for mitochondrial precursor proteins, Cell 59:1061–1070.PubMedCrossRefGoogle Scholar
  271. Söllner, T., Pfaller, R., Griffiths, G., Pfanner, N., and Neupert, W., 1990, A mitochondrial import receptor for the ADP/ATP carrier, Cell 62:107–115.PubMedCrossRefGoogle Scholar
  272. Stader, J., Gansheroff, L. J., and Silhavy, T. J., 1989, New suppressors of signal sequence mutations, prl G, are linked tightly to the secE gene of Escherichia coli, Genes Div. 3:1045–1052.CrossRefGoogle Scholar
  273. Stirling, C. J., Rothblatt, J., Hosobushi, M., Deshaies, R., and Schekman, R., 1992, Protein translocation mutants defective in the insertion of integral membrane proteins into the endo-plasmic reticulum, Mol. Cell Biol. 3:129–142.Google Scholar
  274. Strom, M. S., and Lory, S., 1986, Cloning and expression of the Pil gene of Pseudomonas aeruginosa PAK in Escherichia coli, J. Bacteriol. 165:367–372.PubMedGoogle Scholar
  275. Szczesna-Skorupa, E., Browne, N., Mead, D., and Kemper, B., 1988, Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide, Proc. Natl. Acad. Sci. USA 85:738–742.PubMedCrossRefGoogle Scholar
  276. Szczesna-Skorupa, E., and Kemper, B., 1989, NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450C2, J. Cell Biol. 108:1237–1243.PubMedCrossRefGoogle Scholar
  277. Tani, K., Shiozuka, K., Tokuda, H., and Mizushima, S., 1989, In vitro analysis of the process of translocation of OmpA across the Escherichia coli cytoplasmic membrane: A translocation intermediate accumulates transiently in the absence of the protonmotive force, J. Biol. Chem. 264:18582–18588.PubMedGoogle Scholar
  278. Tajima, S., Lauffer, L., Rath, V. L., and Walter, P., 1986, The signal recognition particle receptor is a complex that contains two distinct Polypeptide chains, J. Cell Biol. 103:1167–1178.PubMedCrossRefGoogle Scholar
  279. Tazawa, S., Umura, M., Tondokoro, J., Asano, Y., Ohsumi, T., Ichimura, T., and Sugano, H., 1991, Identification of a membrane protein responsible for ribosome binding in rough microsomal membranes, J. Biochem. 109:89–98.PubMedGoogle Scholar
  280. Thrift, R. N., Andrews, D. W., Walter, P., and Johnson, A. E., 1991, The transmembrane segment of a nascent membrane protein is located adjacent to specific ER membrane proteins until termination of protein synthesis, J. Cell Biol. 112:809–821.PubMedCrossRefGoogle Scholar
  281. Tommassen, J., Filloux, A., Bally, M., Murgier, M., and Lazdunski, A., 1992, Protein secretion in Pseudomonas aeruginosa, EEMS Microbiol. Rev. 103:73–90.Google Scholar
  282. Toyn, J., Hibbs, A. R., Sanz, P., Goure, J., and Meyer, D. I., 1988, In vivo and in vitro analysis of ptl 1, a yeast is mutant with a membrane-associated defect in protein translocation, EMBO J. 7:4347–4353.PubMedGoogle Scholar
  283. Van der Goot, F. G., Gonzàlaz-Manas, J. M., Lakey, J. H., and Pattus, F., 1991, A “molten-globule” membrane-insertion intermediate of the pore-forming domain of colicin A, Nature 354:408–411.PubMedCrossRefGoogle Scholar
  284. Vestweber, D., Brunner, J., Baker, A., and Schatz, G., 1989, A 42K outer-membrane protein is a component of the yeast mitochondrial protein import site, Nature 341:205–209.PubMedCrossRefGoogle Scholar
  285. Vitanen, P., Garcia, M. L., and Kaback, H. R., 1984, Purified reconstituted 1ac carrier protein from Escherichia coli is fully functional, Proc. Natl. Acad. Sci. USA 81:1629–1633.CrossRefGoogle Scholar
  286. Vogel, J. P., Misra, L. M., and Rose, M. D., 1990, Loss of BLP/GRP 78 function blocks translocation of secretory proteins in yeast, J. Cell Biol. 110:1885–1895.PubMedCrossRefGoogle Scholar
  287. von Heijne, G., 1985, Signal sequences: The limits of variation, J. Mol. Biol. 184:99–105.CrossRefGoogle Scholar
  288. von Heijne, G., 1986a, The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology, EMBO J. 5:3021–3027.PubMedGoogle Scholar
  289. von Heijne, G., 1986b, Mitochondrial targeting sequences may form amphiphilic helices, EMBO J. 5:1335–1342.Google Scholar
  290. von Heijne, G., 1988, Transcending the impenetrable: How proteins come to terms with membranes, Biochem. Biophys. Acta 947:307–333.CrossRefGoogle Scholar
  291. von Heijne, G., 1989, Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues, Nature 341:456–458.CrossRefGoogle Scholar
  292. von Heijne, G., 1990, The signal peptide, J. Membr. Biol. 115:195–201.CrossRefGoogle Scholar
  293. von Heijne, G., and Gavel, Y., 1988, Topogenic signals in integral membrane proteins, Eur. J. Biochem. 174:671–678.CrossRefGoogle Scholar
  294. von Heijne, G., and Manoil, C., 1990, Membrane proteins: From sequence to structure, Protein Eng. 4:109–112.CrossRefGoogle Scholar
  295. von Heijne, G., Steppahn, J., and Herrmann, R. G., 1989, Domain structure of mitochondrial and chloroplast targeting peptides, Eur. J. Biochem. 180:535–545.CrossRefGoogle Scholar
  296. von Heijne, G., Wickner, W., and Dalbey, R. E., 1988, The cytoplasmic domain of Escherichia coli leader peptidase is a “translocation poison” sequence, Proc. Natl. Acad. Sci. USA 85:3363–3366.CrossRefGoogle Scholar
  297. Wachter, C., Schatz, G., and Glick, B. S., 1992, Role of ATP in the intramitochondrial sorting of cytochrome cl and the adenine nucleotide translocator, EMBO J. 11:4787–4794.PubMedGoogle Scholar
  298. Wada, I., Rindress, D., Cameron, P. H., Ou, W-J., Doherty, J. J., Louvard, D., Bell, A. W., Dignard, D., Thomas, D. Y., and Bergeron, J. J. M, 1991, SSR and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane, J. Biol. Chem. 266:19599–19610.PubMedGoogle Scholar
  299. Walter, P., Ibrahimi, I., and Blobel, G., 1981, Translocation of proteins across the endoplasmic reticulum: Signal recognition protein (SRP) binds to in vitro-assembled polysomes synthesizing secretory proteins, J. Cell Biol. 91:545–550.PubMedCrossRefGoogle Scholar
  300. Waters, G., and Blobel, G., 1986, Secretory protein translocation in a yeast cell-free system can occur post-translationally and requires ATP hydrolysis, J. Cell Biol. 12:1543–1550.CrossRefGoogle Scholar
  301. Watson, M. E. E., 1984, Compilation of published signal sequences, Nucleic Acid Res. 12:5145–5164.PubMedCrossRefGoogle Scholar
  302. Webster, R. E., 1991, The tol gene products and the import of macromolecules into Escherichia coli, Mol. Microbiol. 5:1005–1011.PubMedCrossRefGoogle Scholar
  303. Weiss, M. S., Kreusch, A., Schiltz, E., Nestel, U., Weite, W., Weckesser, J., and Schulz, G. E., 1991, The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution, FEBS Lett. 280:379–382.PubMedCrossRefGoogle Scholar
  304. Wessels, H. P., and Spiess, M., 1988, Insertion of a multispanding membrane protein occurs sequentially and requires only one signal sequence, Cell 55:61–70.PubMedCrossRefGoogle Scholar
  305. White, S. H., and Jacobs, R. E., 1990, Observations concerning the topology and locations of helix ends of membrane proteins of known structure, J. Membr. Biol. 115:145–158.PubMedCrossRefGoogle Scholar
  306. Wickner, W., Driessen, A. J. M., and Hartl, F. U., 1991, The enzymology of protein translocation across the Escherichia coli plasma membrane, Annu. Rev. Biochem. 60:101–121.PubMedCrossRefGoogle Scholar
  307. Wiedmann, M., Kurzchalia, T., Hartmann, E., and Rapoport, T., 1987, A signal sequence receptor in the endoplasmic reticulum membrane, Nature 328:830–833.PubMedCrossRefGoogle Scholar
  308. Wiedmann, M., Goerlich, D., Hartmann, E., Kurzchalia, T. V., and Rapoport, T. A., 1989, Photo crosslinking demonstrates proximity of a 34 kDa membrane protein to different portions of preprolactin during translocation through the endoplasmic reticulum, FEBS Lett. 257:263–268.PubMedCrossRefGoogle Scholar
  309. Wolfe, P. B., Rice, M., and Wickner, W, 1985, Effects of two sec genes on protein assembly into the plasma membrane of Escherichia coli, J. Biol. Chem. 260:1836–1841.PubMedGoogle Scholar
  310. Wolin, S. L., and Walter, P., 1989, Signal recognition particle mediates a transient elongation of preprolactinin reticulocyte lysate, J. Cell Biol. 109:2617–2622.PubMedCrossRefGoogle Scholar
  311. Wrubel, W., Stochaj, U., Soonewald, U., Theres, C., and Ehring, R., 1990, Reconstitution of an active lactose carrier in vivo by simultaneous synthesis of two complementary protein fragments, J. Bacteriol. 172:5374–5381.PubMedGoogle Scholar
  312. Yamada, H., Tokuda, H., and Mizushima, S., 1989a, Proton motive force-dependent and-independent protein translocation revealed by an efficient in vitro assay system of Escherichia coli, J. Biol. Chem. 264:1723–1728.PubMedGoogle Scholar
  313. Yamada, H., Matsuyama, S., Tokuda, H., and Mizushima, S., 1989b, A high concentration of SecA allows proton motive force-independent translocation of a model secretory protein into Escherichia coli membrane vesicles, J. Biol. Chem. 264:18577–18581.PubMedGoogle Scholar
  314. Yamagushi, M., Harefi, Y., Trach, K., and Hoch, J. A., 1988, The primary structure of the mitochondrial energy-linked nicotinamide nucleotide transhydrogenase deduced from the sequence of cDNA clones, J. Biol. Chem. 263:2761–2767.Google Scholar
  315. Yamane, K., Ichihara, S., and Mizushima, S., 1987, In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP, J. Biol. Chem. 262:2358–2362.PubMedGoogle Scholar
  316. Yu, Y., Sabatini, D. D., and Kreibich, G., 1990, Antiribophorin antibodies inhibit the targeting to the ER membrane of ribosomes containing secretory Polypeptides, J. Cell Biol. 111:1335–1342.PubMedCrossRefGoogle Scholar
  317. Zerial, M., Huylebroeck, D., and Garoff, H., 1987, Foreign transmembrane peptides replacing the internal signal sequence of transferrin receptor allow its translocation and membrane binding, Cell 48:147–155.PubMedCrossRefGoogle Scholar
  318. Zimmermann, R., and Mollay, C., 1986, Import of honeybee prepromelittin into the endoplasmic reticulum: Requirements for membrane insertion, processing and sequestration, J. Biol. Chem. 261:12889–12895.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Vincent Géli
    • 1
  • Hélène Bénédetti
    • 1
  1. 1.Laboratoire d’Ingéniérie et de Dynamique des Systèmes MembranairesMarseille Cedex 20France

Personalised recommendations