Fast Na+ Current and Ca2+ Currents in Smooth Muscles

  • Nicholas Sperelakis
  • Zhiling Xiong
  • Yoshihito Inoue
  • Yusuke Ohya
  • Keiichi Shimamura
  • David Bielefeld
  • John Lorenz
Part of the NATO ASI Series book series (NSSA, volume 251)

Abstract

Most smooth muscle (SM) cells normally do not possess fast Na+ channels, and inward current for the action potential (AP) is carried primarily through slow (L-type) Ca2+ channels. The slow Ca2+ channel activity is regulated by several mechanisms, as is well known for myocardial cells. In myocardial cells, cyclic AMP and cAMP-dependent protein kinase (cA-PK) stimulate slow Ca2+ channel activity, whereas cyclic GMP and cGMP-dependent protein kinase (cG-PK) inhibit channel activity (reviewed in Sperelakis et al., 1992). Phosphorylation by PK-C also stimulates activity of the myocardial slow Ca2+ channels (Domenici & Rogers, 1988). Intracellular ATP also modulates slow Ca2+ channel activity in myocardial cells, ATP being obligatory for channel activity (Sperelakis & Schneider, 1976; O’Rourke et al., 1992). Acidosis rapidly, reversibly, and rather selectively inhibits the slow Ca2+ channels in cardiac muscle (Vogel & Sperelakis, 1977; Belardinelli et al., 1979; Irisawa and Sato, 1987). Gating of myocardial Ca2+ slow channels by Gs-protein (GTP-activated alpha subunit) has also been demonstrated (Yatani et al., 1988). Intracellular ATP also modulates activity of slow Ca2+ channels in SM cells (Ohya and Sperelakis, 1989a, b), and phosphorylation by either cAMP or cGMP-mediated pathways inhibit slow Ca2+ channel activity (Bkaily et al., 1988a).

Keywords

Cardiol EGTA Diltiazem Pertussis Cali 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean, B.P., Sturek, M., Puga, A., and Hermsmeyer, K.: Calcium channels in muscle cells isolated from rat mesenteric arteries: Modulation by dihydropyridine drugs. Circ. Res. 59, 229–235 (1986).PubMedCrossRefGoogle Scholar
  2. Belardinelli, L., Vogel, S.M., Sperelakis, N., Rubio, R., and Berne, R.M.: Restoration of slow responses in hypoxic heart muscle by alkaline pH. J. Mol. Cell. Cardiol. 11, 877–892 (1979).PubMedCrossRefGoogle Scholar
  3. Benham, C.D. and Tsien, R.W.: Noradrenaline modulation of calcium channels in single smooth muscle cells from rabbit ear artery. J. Physiol. 404, 767–784(1988).PubMedGoogle Scholar
  4. Bkaily, G., Peyrow, M., Yamamoto, T., Sculptoreanu, A., Jacques, D., and Sperelakis, N.: Macroscopic Ca2+-Na+ and K+ currents in single heart and aortic cells. Mol. Cell. Biochem. 80, 59–72 (1988a).PubMedGoogle Scholar
  5. Bkaily, G., Peyrow, M., Sculptoreanu, A., Jacques, D., Chahine, M., Regoli, D., and Sperelakis, N.: Angiotensin II increases Isi and blocks IK in single aortic cell of rabbit. Pflúgers Arch. 412, 448–450 (1988b).PubMedCrossRefGoogle Scholar
  6. Bolton, T.B.: Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59, 606–718 (1979).PubMedGoogle Scholar
  7. Brown, A.M. and Birnbaumer, L.: Direct G protein gating of ion channels. Am. J. Physiol. 254, H401–H410 (1988).PubMedGoogle Scholar
  8. Chiu, A.T., Bozarth, J.M., Forsyth, M.S., and Timmerman, P.B.M.W.M.: Ca++ utilization in the constriction of rat aorta to stimulation of protein kinase C by phorbol dibutyrate. J. Pharmacol. Exp. Therap. 242, 934–939 (1987).Google Scholar
  9. Danthuluri, N.R. and Deth, R.D.: Acute desensitization to angiotensin II: Evidence for a requirement of agonist-induced diacyglycerol production during tonic contraction of rat aorta. Eur. J. Pharmacol. 126, 135–139 (1986).PubMedCrossRefGoogle Scholar
  10. Dosemeci, A., Dhallan, R.S., Cohen, N.M., Lederer, W.J., and Rogers, T.B.: Phorbol ester increases calcium current and stimulates the effects of angiotensin II on cultured neonatal rat heart myocytes. Circ. Res. 62, 347–357, 1988.PubMedCrossRefGoogle Scholar
  11. Droogmans, G., Declerck, I., and Casteels, R.: Effect of adrenergic agonists on Ca2+-channel currents in single vascular smooth muscle cells. Pflúgers Arch. 409, 7–12 (1987).PubMedCrossRefGoogle Scholar
  12. Fish, R.D., Sperti, G., Colucci, W.S., and Clapham, D.E.: Phorbol ester increases the dihydropyridine-sensitive calcium conductance in a vascular smooth muscle cell line. Circ. Res. 62, 1049–1054 (1988).PubMedCrossRefGoogle Scholar
  13. Hescheler, J., Kameyama, M., Trautwein, W., Mieskes, G., and Soling, H.D.: Regulation of the cardiac calcium channel by protein phosphatases. Eur. J. Biochem. 365, 261–266 (1987).CrossRefGoogle Scholar
  14. Honoré, E., Martin, C., Mironneau, C., and Mironneau, J.: An ATP-sensitive conductance in cultured smooth muscle cells from pregnant rat myometrium. Am. J. Physiol. 257, C297–C305 (1989).PubMedGoogle Scholar
  15. Inoue, Y, Nakao, K., Okabe, K., Isumi, H., Kanda, S., Kitamura, K., and Kuriyama, M: Some electrical properties of human pregnant myometrium. Am. J. Obstet. Gynecol. 162, 1090–1098 (1990).PubMedGoogle Scholar
  16. Inoue, Y. and Sperelakis, N.: Gestational change in Na+ and Ca2+ channel current densities in rat myometrial smooth muscle cells. Am. J. Physiol. 260, C658–C663 (1991).PubMedGoogle Scholar
  17. Irisawa, H. and Sato, R.: Intra-and extracellular actions of protons on the calcium current of isolated guinea-pig ventricular cells. Circ. Res. 59, 348–355(1987).CrossRefGoogle Scholar
  18. Itoh, H. and Lederis, K.: Contraction of rat thoracic aorta strips induced by phorbol 12-myristate 13-acetate. Am. J. Physiol. 252, C244–C247 (1987).PubMedGoogle Scholar
  19. Johansson, B. and Somlyo, A.P.: Electrophysiology and excitation-contraction coupling. In: Handbook of Physiology, Sect. 2, The Cardiovascular System, Vol. 2. Am. Physiol. Soc. pp. 301–323 (1980).Google Scholar
  20. Johns, D.W. and Sperelakis, N.: Angiotensin-II stimulation of Ca2+-dependent action potentials in cultured rat aortic smooth muscle cells. Eur. J. Pharmacol. 187, 183–191 (1990).PubMedCrossRefGoogle Scholar
  21. Kuriyama, H., Ito, Y., Suzuki, H., Kitamura, T., and Itoh, T.: Factors modifying contraction-relaxation cycle in vascular smooth muscles. Am. J. Physiol. 243, H641–H662 (1982).PubMedGoogle Scholar
  22. Martin, C., Arnaudeau, S., Jmari, K., Rakotoarisoa, L., Sayet, I., Dacquet, C., Mironneau, C., and Mironneau, J.: Identification and properties of voltage-sensitive sodium channels in smooth muscle cells from pregnant rat myometrium. Mol. Pharmacol. 38, 667–673 (1990).PubMedGoogle Scholar
  23. Miller, S.M., Garfield, R.E., and Daniel, E.E.: Improved propagation in myometrium associated with gapjunctions during parturition. Am. J. Physiol. 256, C130–C141 (1989).PubMedGoogle Scholar
  24. Mironneau, J.: Ion channels and excitation-contraction coupling in myometrium. In: Uterine contractility, Garfield, R.E., eds., Serono Symposia, St. Louis, MO pp. 9–19 (1990).Google Scholar
  25. Ohya, Y. and Sperelakis, N.: Guanosine triphosphate-dependent stimulation of L-type calcium channels of vascular smooth muscle cells. The Physiol. 31, A88 (1988).Google Scholar
  26. Ohya, Y. and Sperelakis, N.: ATP regulation of the slow calcium channels in vascular smooth muscle cells of guinea pig mesenteric artery. Circ. Res. 64, 145–154 (1989a).PubMedCrossRefGoogle Scholar
  27. Ohya, Y. and Sperelakis, N.: Modulation of single slow (L-type) calcium channels by intracellular ATP in vascular smooth muscle cells. Pflúgers Arch. 414, 257–264 (1989b).PubMedCrossRefGoogle Scholar
  28. Ohya, Y. and Sperelakis, N.: Fast Na+ and slow Ca2+ channels in single uterine muscle cells from pregnant rats. Am. J. Physiol. 257, C408–C412 (1989c).PubMedGoogle Scholar
  29. Ohya, Y. and Sperelakis, N.: Involvement of a GTP-binding protein in stimulating action of angiotensin II on calcium channels in vascular smooth muscle cells. Circ. Res. 68, 763–771 (1991).PubMedCrossRefGoogle Scholar
  30. Okabe, K., Kajioka, S., Nakao, K., Kitamura, K., and Kuriyama, H.: Action of cromakalin on ionic currents recorded from single smooth muscle cells of the rat portal vein. J. Pharmacol. Exp. Therap. 252, 832–839 (1990).Google Scholar
  31. O’Rourke, B., Blackx, P.H., and Marban, E.: Phosphorylation-independent modulation of L-type calcium channels by magnesium-nucleotide complexes. Science 257:245–248 (1992).PubMedCrossRefGoogle Scholar
  32. Ousterhout, J.M. and Sperelakis, N.: Cyclic nucleotides depress action potentials in cultured aortic smooth muscle cells. Eur. J. Pharmacol. 144, 7–14 (1987).PubMedCrossRefGoogle Scholar
  33. Pacaud, P., Loirand, G., Mironneau, C., and Mironneau, J: Opposing effects of noradrenaline on the two classes of voltage-dependent calcium channels of single vascular smooth muscle cells in short-term primary culture. Pflúgers Arch. 410, 557–559 (1987).PubMedCrossRefGoogle Scholar
  34. Rasmussen, H., Takuwa, Y., and Park, S.: Protein kinase C in the regulation of smooth muscle contraction. FASEB J. 1, 177–185 (1987).PubMedGoogle Scholar
  35. Sakai, N., Tabb, T., and Garfield, R.E.: Modulation of cell-to-cell coupling between myometrial cells of the human uterus during pregnancy. Am. J. Obstet. Gynecol. 167, 472–480 (1992).PubMedGoogle Scholar
  36. Savineau, J., Mironneau, J., and Mironneau, C.: Influence of the sodium gradient on contractile activity in pregnant rat myometrium. Gen. Physiol. Biophysics. 6, 535–560 (1987).Google Scholar
  37. Smirnov, S.V., Zholos, A.V., and Shuba, M.F.: Potential-dependent inward currents in single isolated smooth muscle cells of the rat ileum. J. Physiol, London 454, 549–571 (1992).Google Scholar
  38. Somlyo, A.V., Bond, M., Somlyo, A.P., Scarps, A.: Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc. Natl. Acad. Sci. 82, 5231–5235 (1985).PubMedCrossRefGoogle Scholar
  39. Sperelakis, N., Inoue, Y., and Ohya, Y.: Fast Na+ channels in smooth muscle from pregnant rat uterus. Can. J. Physiol. Pharmacol. 70, 491–500 (1992).PubMedCrossRefGoogle Scholar
  40. Sperelakis, N. and Ohya, Y: Electrophysiology of vascular smooth muscle. In: Physiology and Pathophysiology of the Heart, 2nd edition, Kluwer Academic Press, Boston, pp. 773–811 (1989).Google Scholar
  41. Sperelakis, N. and Schneider, J.A.: A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am. J. Cardiol. 37, 1079–1085 (1976).PubMedCrossRefGoogle Scholar
  42. Sperelakis, N., Tohse, N., and Ohya, Y.: Regulation of calcium slow channels in cardiac muscle and vascular smooth muscle cells. In: Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle, Frank, G.B., ed., Plenum Press, New York pp. 163–187 (1992).CrossRefGoogle Scholar
  43. Suematsu, E., Hirata, M., Sasaguri, T., Hashimoto, T., and Kuriyama, H.: Roles of Ca2+ on the inositol 1,4,5-triphosphate-induced release of Ca2+ from saponin-permeabilized single cells of the porcine coronary artery. Comp. Biochem. Physiol. 82A, 645–649 (1985).Google Scholar
  44. Vogel, S. and Sperelakis, N.: Blockade of myocardial slow inward current at low pH. Am. J. Physiol. 233, C99–C103 (1977).PubMedGoogle Scholar
  45. Werz, M.A. and MacDonald, R.L.: Phorbol esters: Voltage-dependent effects on calcium-dependent action potentials of mouse central and peripheral neurons in cell culture. Neurosci. 7, 1639–1647 (1987).Google Scholar
  46. Xiong, Z.L., Sperelakis, N., Noffsinger, A., and Fenoglio-Preiser, C.: Fast Na+ current in circular smooth muscle cells of the large intestine. Pflugers Arch. (submitted) (1992).Google Scholar
  47. Yatani, A., Imoto, Y., Codina, J., Hamilton, S.L., Brown, A.M., and Birnbaumer, L.: The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydroyridine-sensitive Ca2+ channels. J. Biol. Chem. 263, 9887–9895 (1988).PubMedGoogle Scholar
  48. Yatani, A., Codina, J., Imoto, Y., Reeves, J.P., Birnbaumer, L., and Brown, A.M.: AG protein directly regulates mammalian cardiac calcium channels. Science 238, 1288–1292 (1987).PubMedCrossRefGoogle Scholar
  49. Yatani, A., Seidel, C.L., Allen, J., and Brown, A.M.: Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein. Circ. Res. 60, 523–533 (1987).PubMedCrossRefGoogle Scholar
  50. Young, R.C. and Herndon-Smith, L.: Characterization of sodium channels in cultured human uterine smooth muscle cells. Am. J. Obstet. Gynecol. 164, 175–181 (1991).PubMedGoogle Scholar
  51. Zelcer, E. and Sperelakis, N.: Angiotensin induction of active responses in cultured reaggregates of rat aortic smooth muscle cells. Bloodvessels 18, 263–279 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Nicholas Sperelakis
    • 1
  • Zhiling Xiong
    • 1
  • Yoshihito Inoue
    • 1
  • Yusuke Ohya
    • 1
  • Keiichi Shimamura
    • 1
  • David Bielefeld
    • 1
  • John Lorenz
    • 1
  1. 1.Department of Physiology & BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations