Redox Regulation of K+ Channels and Hypoxic Pulmonary Vasoconstriction

  • J. M. Post
  • E. K. Weir
  • S. L. Archer
  • J. R. Hume
Part of the NATO ASI Series book series (NSSA, volume 251)

Abstract

The pulmonary vasculature is unique in that hypoxia causes vasoconstriction; whereas, most systemic vessels dilate (Daut et al., 1990). Hypoxic pulmonary vasoconstriction (HPV) serves as an adaptive mechanism by which blood flow is diverted from poorly ventilated to better ventilated regions of the lung to optimize ventilation/perfusion matching (Archer and Weir, 1989a; Cutaia and Rounds, 1990).

Keywords

Glutathione NADPH Thiol Aeration Verapamil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammon, H.P.T., Akhtar, M.S., Niklas, H., and Hegner, D., 1977, Inhibition of p-chloromercuribenzoate-and glucose-induced insulin release in vitro by methylene blue, diamide, and tert-butyl hydroperoxide. Mol. Pharm. 13:598–605.Google Scholar
  2. Ammon, H.P.T., Hägele, R., Youssif, N., Eujen, R., and El-Amri, N., 1983, A possible role of intracellular and membrane thiols of rat pancreatic islets in calcium uptake and insulin release. Endocrinology 112:720–726.PubMedCrossRefGoogle Scholar
  3. Archer, S.L., McMurtry, I.F., and Weir, E.K., 1989a, Mechanisms of Acute Hypoxic and Hyperoxic Changes in Pulmonary Vascular Reactivity, in: “Pulmonary Vascular Physiology and Pathophysiology,” E.K. Weir and J.T. Reeves, eds., Marcel Dekker, Inc., New York p. 241–290.Google Scholar
  4. Archer, S.L., Nelson, D.P. and Weir, E.K., 1989b, Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung. J. Appl. Physiol. 67:1903–1911.PubMedGoogle Scholar
  5. Archer, S.L., Peterson, D., Nelson, D.P., DeMaster, E.G., Kelly, B., Eaton, J.W., and Weir, E.K., 1989c, Oxygen radicals and antioxidant enzymes alter pulmonary vascular reactivity in the rat lung. J. Appl. Physiol. 6: 102–111.Google Scholar
  6. Archer, S.L., and Weir, E.K., 1989d, Mechanisms in Hypoxic Pulmonary Hypertension. In: “Pulmonary Circulation: Advances and Controversies. C.A. Wagenvoort and H. Denolin, eds., Elsevier Science Publishers, New York. p.87–113.Google Scholar
  7. Archer, S.L., Will, J.A., and Weir, E.K., 1986, Redox status in the control of pulmonary vascular tone. Herz 11:127–141.PubMedGoogle Scholar
  8. Archer, S.L., Yankovich, R.D., Chesler, E., and Weir, E.K., 1985, Comparative effects of nisoldipine, nifedipine and bepridil on experimental pulmonary hypertension. J. Pharm. Exp. Ther. 233:12–17.Google Scholar
  9. Atkinson, N.S., Robertson, G.A., and Ganetzky, B., 1991, A component of calcium-activated potassium channels encoded by the drosophila slo locus. Science Wash DC 253:551–555.CrossRefGoogle Scholar
  10. Burghuber, O., Mathies, M.M., McMurtry, I.F., Reeves, J.T. and Voelkel, N.F. 1984, Lung edema due to hydrogen peroxide is independent of cyclooxygenase products. J. Appl. Physiol. 56:900–905.PubMedGoogle Scholar
  11. Burke-Wolin, T., and Wolin, M.S., 1989, H2O2 and cGMP may function as an O2 sensor in the pulmonary artery. J. Appl. Physiol. 66:167–170.PubMedGoogle Scholar
  12. Côté, A., Blanchard, P.W., and Meehan, B., 1992, Metabolie and cardiorespiratory effects of doxapram and theophylline in sleeping newborn piglets. J. Appl. Physiol. 72:410–415.PubMedCrossRefGoogle Scholar
  13. Cutaia, M., and Rounds, S., 1990, Hypoxie pulmonary vasoconstriction. Chest 97:706–718.PubMedCrossRefGoogle Scholar
  14. Daut, J., Maier-Rudolph, W., von Bekerath, N., Mehrke, G., Günther, K., and Goedel-Meinen., L., 1990, Hypoxie dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science Wash. DC 247:1341–1344.CrossRefGoogle Scholar
  15. Delpiano, M.A., and Hescheler, J., 1989, Evidence for a PO2-sensitive K+ channel in the type-I cell of the rabbit carotid body. FEBS Lett. 249:195–198.PubMedCrossRefGoogle Scholar
  16. Eklöw, L., Moldéus, P., and Orrenius, S., 1984, Oxidation of glutathione during hydroperoxide metabolism. Eur. J. Biochem. 138:459–463.PubMedCrossRefGoogle Scholar
  17. Elkins, T., Banetzky, B., and Wu, C., 1986, A drosophila mutation that eliminates a calcium-dependent potassium current. Proc. Natl. Acad. Sci. USA 83:8415–8419.PubMedCrossRefGoogle Scholar
  18. Ganfornina, M.D., and López-Barneo, J., 1991, Single K+ channels in membrane patches of arterial chemoreceptor cells are modulated by O2 tension. Proc. Natl Acad. Sci. USA 88:2927–2930.PubMedCrossRefGoogle Scholar
  19. Gelband, C.H., Ishikawa, T., Post, J.M., Keef, K.D. and Hume, J.R., 1993, Intracellular divalent cations block smooth muscle K+ channels. Circ. Res. in press.Google Scholar
  20. Lebrun, P., Malaisse, W.J., and Herchuelz, A., 1983, Impairment by aminooxyacetate of ionic response to nutrients in pancreatic islets. Am. J. Physiol. 245:E38–E46.PubMedGoogle Scholar
  21. López-Barneo, J., López-López, J., Ureña, J., and González, C., 1988, Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science Wash. DC 242:580–582.CrossRefGoogle Scholar
  22. Marty, A, and Neher, E., 1985, Potassium channels in cultured bovine adrenal chromaffin cells. J. Physiol. Lond. 367:117–141.PubMedGoogle Scholar
  23. McMurtry, I.F., 1984, Angiotensin is not required for hypoxic constriction in salt solution-perfused rat lungs. J. Appl. Physiol. 56:375–380.PubMedCrossRefGoogle Scholar
  24. Mc Murtry, I.F., 1985, BAY K 8644 potentiates and A23187 inhibits hypoxic vasoconstriction in rat lungs. Am. J. Physiol. 249:H741–H746.Google Scholar
  25. McMurtry, I.F., Davidson, A.B., Reeves, J.T., and Grover, R.F., 1976, Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ.Res. 38:99–104.PubMedCrossRefGoogle Scholar
  26. Meury, J., and Kepes, A., 1982, Glutathione and the gated potassium channels of Escherichia coli. EMBO J. 1:339–343.PubMedGoogle Scholar
  27. Mitchell, R.A., and Herbert, D.A., 1975, Potencies of doxapram and hypoxia in stimulating carotid-body chemoreceptors and ventilation in anesthetized cats. Anesthesiology 42:559–566.PubMedCrossRefGoogle Scholar
  28. Naeije, R., Lejeune, P., Vachiéry, J., Leeman, M., Mélot, Hallemans, R., Delcroix, M., and Brimioulle, S., 1990, Restored hypoxic pulmonary vasoconstriction by peripheral chemoreceptor agonists in dogs. Am. Rev. Respir. Dis. 142:789–795.Google Scholar
  29. Okabe, K., Kitamura, K., and Kuriyama, H., 1987, Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery. Pflugers Arch. 409:561–568.PubMedCrossRefGoogle Scholar
  30. Okabe, K., Kitamura, K., and Kuriyama, H., 1988, The existence of a highly tetrodotoxin sensitive Na channel in freshly dispersed smooth muscle cells of the rabbit main pulmonary artery. Pfluegers Arch. 411:423–428.CrossRefGoogle Scholar
  31. Patterson, C.E., Butler, J.A, Byrne, F.D., and Rhodes, M.L., 1985, Oxidant lung injury: intervention with sulfhydryl reagents. Lung 163:23–32.PubMedCrossRefGoogle Scholar
  32. Peers, C., 1990, Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2+-activated K+ current. Neurosci. Letters 119:253–256.CrossRefGoogle Scholar
  33. Post, J.M., Hume, J.R., Archer, S.L., and Weir, E.K., 1992, Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am. J. Physiol 262:C882–C890.PubMedGoogle Scholar
  34. Robertson, B.E., Corry, P.R., Nye, P.C.G., and Kozlowski, R.Z., 1992, Ca2+ and Mg-ATP activated potassium channels from rat pulmonary artery. Pflugers Arch 421:97–99.CrossRefGoogle Scholar
  35. Robertson, S.P., and Potter, J.D., 1984, “Methods In Pharmacology,” Plenum, New York p. 63–75.Google Scholar
  36. Ruppersberg, J.P., Stocker, M., Pongs, O., Heinemann, S.H., Frank, R., and Koenen, M., 1991, Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 352:711–714.PubMedCrossRefGoogle Scholar
  37. Salvaterra, C.G., and Goldman, W.F., 1991, Direct effects of hypoxia on apparent intracellular calcium levels in cultured pulmonary vascular smooth muscle cells. Am. Rev. Resp. Dis. 163:A373.Google Scholar
  38. Salvaterra, C.G., and Goldman, W.F., 1991, Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am. J. Physiol. 264:L323–L328.Google Scholar
  39. Schmid, A., Barhanin, J., Coppola, T., Borsotto, M., and Lazdunski, M., 1986, Immunochemical analysis of subunit structures of 1,4-dihydropyridine receptors associated with voltage-dependent Ca2+ channels in skeletal, cardiac, and smooth muscles. Biochem. 25:3492–3495.CrossRefGoogle Scholar
  40. Strupp, M., Quasthoff, S., Mitrović, and Grafe, P., 1992, Glutathione accelerates sodium channel inactivation in excised rat axonal membrane patches. Pflugers Arch 421:283–285.PubMedCrossRefGoogle Scholar
  41. Tolins, M., Weir, E.K., Chesler, E., Nelson, D.P., and From, A.H.L., 1986, Pulmonary vascular tone is increased by a voltage-dependent calcium channel potentiator. J. Appl. Physiol. 60:942–948.PubMedGoogle Scholar
  42. Turrens, J.F., Freeman, B.A., Levitt, J.G., and Crapo, J.D., 1982, The effect of hyperoxia on Superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217:401–410.PubMedCrossRefGoogle Scholar
  43. Weir, E.K., Eaton, J.W., and Chesler, E., 1985, Redox status and pulmonary vascular reactivity. Chest 88:249S–252S.PubMedGoogle Scholar
  44. Weir, E.K., and Will, J.A., 1982, Oxidants: a new group of pulmonary vasodilators. Clin Resp. Physiol. 18:81–85.Google Scholar
  45. White, R.E., Mimmack, R.F., and Repine, J.E., 1986, Accumulation of lung tissue oxidized glutathione (GSSG) as a marker of oxidant induced lung injury. Chest 89:111S–113S.PubMedCrossRefGoogle Scholar
  46. Yuan, X., Tod, M.L., Rubin, L.J., and Blaustein, M.P., 1990, Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am. J. Physiol 259:H281–H289.PubMedGoogle Scholar
  47. Yuan, X., Goldman, W.F., Tod, M.L., Rubin, LJ. and Blaustein, M.P., 1993, Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am. J. Physiol. 264:L116–L123.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • J. M. Post
    • 1
  • E. K. Weir
    • 2
  • S. L. Archer
    • 2
  • J. R. Hume
    • 1
  1. 1.Department of PhysiologyUniversity of Nevada School of MedicineRenoUSA
  2. 2.Department of MedicineUniversity of Minnesota, Minneapolis Veterans Administration Medical CenterMinneapolisUSA

Personalised recommendations