Skip to main content

Some Biological and Physical Principles Underlying Modified Atmosphere Packaging

  • Chapter
Minimally Processed Refrigerated Fruits & Vegetables

Abstract

The practice of modified atmosphere packaging (MAP) for fresh and minimally processed refrigerated (MPR) fruits and vegetables is expanding rapidly, particularly for commodities with a relatively short storage life (Cameron 1989; Chinnan 1989; Hayakawa, Henig, and Gilbert 1975; Hobson and Burton 1989; Kader 1986; Mannapperuma and Singh 1990). The subject has been reviewed in the past from both a practical and a theoretical point of view (Chinnan 1989; Mannapperuma and Singh 1990). The beneficial effects of MAP are due in part to the decrease in O2 and the increase in CO2 levels, and in part to the decrease in water loss (Ben-Yehoshua et al. 1983; Biale 1946, Biale 1960; Fidler et al. 1973; Isenberg 1979; Kader 1980, Kader 1986; Kidd and West 1945; Lipton and Harris 1974; Smock 1979). In fact, in non-climacteric fruits such as citrus fruits, the prevention of water loss is the main factor contributing to the extension of their storage life (Ben-Yehoshua et al. 1983). (See Chapter 4 for packaging materials.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Baki, A.A. and T. Solomos. 1993. The diffusivity of CO2 in the skin and the flesh of potato tubers (Solanum tuberosum cv Russet Burbank) J. Am. Hort. Sci., (in press.)

    Google Scholar 

  • apRees, T. and H. Beevers. 1960. Pentose phosphate pathway as a major component of induced respiration of carrot and potato slices. Plant Physiol. 35:839–847.

    Article  CAS  Google Scholar 

  • Banks, N.H. 1985. Estimating skin resistance to gas diffusion in apples and potatoes. J. Exp. Bot. 36:1842–50.

    Article  CAS  Google Scholar 

  • Banks, N.H. and S.J. Kays. 1988. Measuring internal gases and lenticel resistance to gas diffusion in potato tubers. J. Am. Hort. Sci. 113:577–580.

    Google Scholar 

  • Beevers, H. 1961. Plant Respiration. New York: Row, Paterson and Co.

    Google Scholar 

  • Ben-Yehoshua, S., B. Shapiro, Z. Even-Chen, and S. Lurie. 1983. Mode of action of plastic film in extending life of lemon and bell pepper fruits by alleviation of water stress. Plant Physiol. 73:87–93.

    Article  CAS  Google Scholar 

  • Biale, J.B. 1946. Effect of oxygen concentration on respiration of avocado fruit. Am. J. Bot. 33:363–373.

    Article  CAS  Google Scholar 

  • Biale, J.B. 1960. Respiration of fruits. In Hanbuch Der Plantephysiologie. Encyclopedia of Plant Physiology, Vol. XII/2, J. Wolf (ed.), pp. 536–592. Berlin: Springer-Verlag.

    Google Scholar 

  • Blackman, F.F. 1954. Analytical Studies in Plant Respiration. London: Cambridge University Press.

    Google Scholar 

  • Brädle, R. 1968. Die Verteilung der Sauerstoffkonzentration in fleischigen Spercherorganen (Apfel, Bannanen, and Kartollknollen) Ber. Schwiez. Bot. Ges. 78:330–64.

    Google Scholar 

  • Briggs, G.E., A.B. Hope, and R.N. Robertson. 1961. Electrolytes and Plant Cells. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Burg, S.P. and E.A. Burg. 1965. Gas exchange in fruits. Physiol. Plant. 18:870–886.

    Article  CAS  Google Scholar 

  • Burg, S.P. and E.A. Burg. 1967. Molecular requirements for the biological activity of ethylene. Plant Physiol. 42:144–151.

    Article  CAS  Google Scholar 

  • Burton, W.G. 1950. Studies on the dormancy and sprouting of potatoes. I. The oxygen content of potato tuber. New Phytol. 49:121–34.

    Article  CAS  Google Scholar 

  • Burton, W.G. 1974. Some biophysical principles underlying the controlled atmosphere storage of plant material. Ann. Appl. Biol. 78:149–168.

    Article  CAS  Google Scholar 

  • Butler, W., C. Cook, and M.E. Vaya. 1990. Hypoxic stress inhibits multiple aspects of potato tuber wound process. Plant Physiol. 93:264–270.

    Article  CAS  Google Scholar 

  • Cameron, A.A. 1989. Modified atmosphere packaging: a novel approach for optimizing package oxygen and carbon dioxide. In Controlled Atmosphere Research Conference, Wanatchee, WA.

    Google Scholar 

  • Cameron, A.C. and S.F. Yang. 1980. A simple method for the determination of resistance to gas diffusion in plant organs. Plant Physiol. 70:21–23.

    Article  Google Scholar 

  • Cameron, A.A., W.E. Boylan-Pett, and J. Lee. 1989. Design of modified atmosphere systems. Modeling oxygen concentrations within sealed packages of tomato fruits. J. Food Sci. 54:1413–1416.

    Article  Google Scholar 

  • Cameron, A.A., W.E. Boylan-Pett, and J. Lee. 1989. Design of modified atmosphere systems. Modeling oxygen concentrations within sealed packages of tomato fruits. J. Food Sci. 54:1421.

    Article  Google Scholar 

  • Chevillotte, P. 1973. Relation between the reaction of cytochrome oxidase-oxygen uptake in cells in vivo. The role of diffusion. J. Theor. Biol. 39:277–295.

    Article  CAS  Google Scholar 

  • Chinnan, M.S. 1989. Modeling gaseous environment and physio-chemical changes of fresh fruits and vegetables in modified atmospheric storage. American Chemical Society Symposium 189–202.

    Google Scholar 

  • Clicke, R.E. and D.P. Hackett. 1963. The role of protein and nucleic acid synthesis in the development of respiration in potato tuber slices. Proc. Natl. Acad. Sci. USA 50:243–250.

    Article  Google Scholar 

  • Crank, J. 1970. The Mathematics of Diffusion. Oxford: Clarendon Oxford Press.

    Google Scholar 

  • Davies, D.D. 1980. Anaerobic production of organic acids. In The Biochemistry of Plants. A Comprehensive Treatise, Vol. 2, D.D. Davies (ed.), pp. 581–611. New York: Academic Press.

    Google Scholar 

  • Deily, K.R. and S.S.H. Rizvi. 1981. Optimization of parameters for packaging of fresh peaches in polymeric films. J. Food Proc. Engin. 5:23–41.

    Article  Google Scholar 

  • Douce, R. 1985. Plant Mitochondria. New York: Academic Press.

    Google Scholar 

  • Fidler, J.C., B.G. Wilkinson, K.L. Edney, and R.O. Sharpies. 1973. The biology of apple and pear storage. Research Review. No. 3. Commonwealth Bureau of Horticulture and Plant Crops. East Mailing, Maidstone Kent, U.K.

    Google Scholar 

  • Geankoplis, C.J. 1983. Transport Processes and Unit Operations. Boston: Allyn and Bacon.

    Google Scholar 

  • Goldberter, A. 1991. Models for oscillation and excitability in biochemical systems. In Biological Kinetics, pp. 107–154. Cambridge University Press.

    Google Scholar 

  • Goodenough, P.W. and T.H. Thomas. 1981. Biochemical changes in tomatoes stored in modified gas atmospheres. I. Sugars and acids. Ann. Appl. Biol. 98:507–.

    Article  CAS  Google Scholar 

  • Hayakawa, K.I., Y.S. Henig, and S.G. Gilbert. 1975. Formulae for predicting gas exchange of fresh produce in polymer film package. J. Food Sci. 40:186–191.

    Article  CAS  Google Scholar 

  • Henig, Y.S. and S.G. Gilbert, 1975. Computer analysis of the variables affecting respiration and quality in produce packaged in polymeric films. J. Food Sci. 40:1033–1035.

    Article  CAS  Google Scholar 

  • Hill, A.V. 1928. Diffusion of oxygen and lactic acid through tissues. Proc. R. Soc. Biol. Ser. B. 104:39–96.

    Article  CAS  Google Scholar 

  • Hobson, G. and K.S. Burton. 1989. The application of plastic film technology to the preservation of fresh horticultural produce. Prof. Horticult. 3:20–23.

    Google Scholar 

  • Hulme, A.C. 1951. Apparatus for the measurement of gaseous conditions inside apple fruits. Exp. Bot. 2:65–85.

    Article  CAS  Google Scholar 

  • Hulme, A.C. 1956. Carbon dioxide injury and the presence of succinic acid in apples. Nature 178:218.

    Article  CAS  Google Scholar 

  • Isenberg, M.F.R. 1979. Controlled atmosphere storage of vegetables. Hort. Rev. 1:337–394.

    CAS  Google Scholar 

  • Isherwood, A.C. 1973. Starch—sugar interconversion in Solanum tuberosum. Phytochemistry 12:2579–2591.

    Article  CAS  Google Scholar 

  • Jacobs, M.H. 1967. Diffusion Processes. New York: Springer-Verlag.

    Book  Google Scholar 

  • Jacobson, B.S., B. Smith, S. Epstein, and G.G. Laties. 1970. The prevalence of carbon-13 in respiratory carbon dioxide as an indicator of the type of endogenous substrate. J. Gen. Physiol. 25:1–17.

    Article  Google Scholar 

  • James, W.O. 1953. Plant Respiration. Oxford: Oxford Press.

    Google Scholar 

  • Jost, W. 1960. Diffusion in Solids, Liquids and Gases. New York: Academic Press.

    Google Scholar 

  • Jurin V. and M. Karel. 1963. Studies on control of respiration of McIntosh apples by packaging methods. Food Technol. 17:104–108.

    CAS  Google Scholar 

  • Kader, A.A. 1980. Prevention of ripening in fruits by use of controlled atmospheres. Food Technol. 34:51–54.

    Google Scholar 

  • Kader, A.A. 1985. Modified atmospheres: an index reference list with emphasis on horticultural commodities. Supplement No. 4. Post Harvest Hort Series 3, University of California, Davis.

    Google Scholar 

  • Kader, A.A. 1986. Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technol. 40:94–104.

    Google Scholar 

  • Kahl, G. 1974. Metabolism in plant storage tissue slices. Bot. Rev. 40:263–314.

    Article  CAS  Google Scholar 

  • Kannelis, A.K., T. Solomos, and K.A. Roubelakis-Angelakis. 1990. Suppression of cellulase and polygalacturonase and induction of alcohol dehydrogenase isoenzymes in avocado fruit mesocarp subjected to low oxygen stress. Plant Physiol. 96:269–274.

    Article  Google Scholar 

  • Kidd, F. and C. West. 1945. Respiratory activity and duration of life of apples. Plant Physiol. 20:467–504.

    Article  CAS  Google Scholar 

  • Knee, M. 1980. Physiological responses of apple fruits to oxygen concentrations. Ann. Appl. Biol. 96:243–253.

    Article  Google Scholar 

  • Kuai, J. and D.R. Dilley. 1992. Extraction, partial purification and characterization of 1-aminocyclopropane-1-carboxylic acid oxidase from apple fruit. Postharvest Biol. Techn. 1:203–211.

    Article  CAS  Google Scholar 

  • Lancaster, P. and K. Salkauskas. 1986. Curve and Surface Fitting. New York: Academic Press.

    Google Scholar 

  • Laties, G.G. 1978. The development and control of respiratory pathways in slices of plant storage organs. 1978. In Biochemistry of Wounded Plant Tissues, Ed. G. Kahl (ed.), pp. 421–466. Berlin: Walter de Gruyter.

    Google Scholar 

  • Lau, O.L. and N.E. Looney. 1978. Effects of pre-storage high carbon dioxide treatment on British Columbia and Washington State Golden Delicious apples. J. Am. Soc. Horticult. Sci. 103:341–344.

    CAS  Google Scholar 

  • Lipton, W.J. and CM. Harris. 1974. Controlled atmosphere effects for fresh vegetables and fruits, why and when. In Postharvest Biology and Handling of Fruits and Vegetables, Vol. 2. N.F. Haard and D.K. Salunkhe (ed.), pp. 340 Westport, CT: AVI Publishing.

    Google Scholar 

  • Liu, F.W. and C. Long-Jum. 1986. Responses of daminozide-sprayed McIntosh apples to various concentrations of oxygen and ethylene simulated CA storage. J. Am. Soc. Horticult. Sci. 111:400–403.

    CAS  Google Scholar 

  • Lougheed, E.C. 1987. Interactions of oxygen, carbon dioxide, temperature and ethylene that may induce injuries in vegetables. HortScience 22:791–794.

    Google Scholar 

  • Lyons, S.M. Chilling injury in plants. 1973. Annu. Rev. Plant Physiol. 24:445–446.

    Article  CAS  Google Scholar 

  • Mannapperuma, J.D. and R.P. Singh. 199. Modeling of gas exchange in polymeric packages of fresh fruits and vegetables. Abstract 646. Inst. Food Technol. Annual Meeting, Dallas, TX.

    Google Scholar 

  • Mapson, L.W. and Burton, W.G. 1962. The terminal oxidases of potato tuber. Biochem. J. 82:19–25.

    CAS  Google Scholar 

  • Mapson, L.W. and J.E. Robinson. 1966. Relation between oxygen tension, biosynthesis of ethylene, respiration and ripening changes in banana fruit. J. Food Technol. 1:215–225.

    Article  CAS  Google Scholar 

  • McMurchie, E.J., B.W. McGlason, and J.L. Eaks. 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235–236.

    Article  CAS  Google Scholar 

  • Nakhasi, S., D. Schlimme, and T. Solomos. 1991. Storage potential of tomatoes harvested at the breaker stage using modified atmosphere packaging. J. Food. Sci. 55:55–59.

    Article  Google Scholar 

  • Nobel, P.S. 1983. Biophysical Plant Physiology. San Francisco: Freeman and Company.

    Google Scholar 

  • Quazi, M.H. and H.T. Freebairn. 1970. The influence of ethylene, oxygen and carbon dioxide on ripening of bananas. Bot. Gaz. 131:5–14.

    Article  CAS  Google Scholar 

  • Salveit, M.E. 1989. A summary of requirements and recommendations for the controlled and modified atmosphere storage of harvested vegetables. In: Controlled Atmosphere Research Conference, Wenatchee, WA.

    Google Scholar 

  • Siau, J.F. 1984. Transport Processes in Wood. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Siedow, J.N. 1982. The nature of cyanide-resistant pathway in plant mitochondria. Rec. Adv. Phytochem. 16:47–84.

    CAS  Google Scholar 

  • Siriphanich, J. and A.A. Kader. 1985a. Effects of CO2 on total phenolics, phenylalanine amonia lyase, and polyphenol oxidase in lettuce tissue. J. Am. Soc. Hort. Sci. 110:249–253.

    CAS  Google Scholar 

  • Siriphanich, J. and A.A. Kader. 1985b. Effects of CO2 on cinnamic acid 4-hydroxylase in relation to phenolic metabolism in lettuce tissue. J. Am. Soc. Horticult. Sci. 110:333–335.

    CAS  Google Scholar 

  • Siriphanich, J. and A.A. Kader. 1986. Changes in cytoplasmic and vacuolar pH in harvested lettuce tissue as influenced by CO2. J. Am. Soc. Horticult. Sci. 111:73–77.

    CAS  Google Scholar 

  • Smock, R.M. 1979. Controlled atmosphere storage of fruits. Horticult. Rev. 1:301–336.

    CAS  Google Scholar 

  • Solomos, T. 1977. Cyanide-resistant respiration in higher plants. Annu. Rev. Plant. Physiol. 28:279–97.

    Article  CAS  Google Scholar 

  • Solomos, T. 1982. Effect of oxygen concentration on fruit respiration: nature of respiratory diminution. In Controlled Atmospheres for Storage Transport of Perishable Agricultural Commodities, D.G. Richardson and M. Meheriuk (eds.), pp. 161–170. Beaverton, OR: Timber Press.

    Google Scholar 

  • Solomos, T. 1987. Principles of gas exchange in bulky plant tissues. HortScience 22:766–771.

    Google Scholar 

  • Solomos, T. 1988. Respiration in senescing plant organs: its nature, regulation, and significance. In Senescence and Aging in Plants, L.D. Nooden and A.C. Leopold (eds.), New York: Academic Press.

    Google Scholar 

  • Solomos, T. 1989. A simple method for determining the diffusivity of ethylene in ‘McIntosh apples’. Scientia Horticult. 39:311–318.

    Article  CAS  Google Scholar 

  • Solomos, T. and G.G. Laties. 1976. Effects of cyanide and ethylene on respiration of cyanide-sensitive and cyanide-resistant plant tissues. Plant Physiol. 58:47–50.

    Article  CAS  Google Scholar 

  • Storey, K.D. and J.M. Storey. 1990. Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estimation. Q. Rev. Biol. 65:145–174.

    Article  CAS  Google Scholar 

  • Theologis, A. and G.G. Laties, 1978. Relative contribution of cytochrome-mediated and cyanide-resistant electron transport in fresh and aged potato slices. Plant Physiol. 2:232–237.

    Article  Google Scholar 

  • Trout, S.A., E.G. Hall, R.N. Robertson, F.M.V. Hackney, and S.M. Sykes. 1942. Studies in the metabolism of apples: preliminary investigations on internal gas composition and its relation to changes in stored Granny Smith apples. Aust. J. Exp. Biol. Med. Sci. 20:219–231.

    Article  CAS  Google Scholar 

  • Tucker, M. and G.G. Laties. 1985. The dual role of oxygen in avocado fruit respirations: kinetic analysis and computer modeling of diffusion-affected respiratory oxygen isotherms. Plant Cell Environ. 8:117–127.

    Article  Google Scholar 

  • Turner, J.S. and D.H. Turner. 1980. The regulation of glycolysis and pentose pathway. In The Biochemistry of Plants: A Comprehensive Treatise, Vol. 2, D.D. Davies (ed.), pp. 279–316. New York: Academic Press.

    Google Scholar 

  • Uritani, I. and T. Asahi. 1980. Respiration and related metabolic activity in wounded and infected plant tissues. In The Biochemistry of Plants A Comprehensive Treatise, Vol. 2, D.D. Davies (ed.), pp. 463–485. New York: Academic Press.

    Google Scholar 

  • Waldraw, C.W. and E.R. Leonard. 1939. Studies on tropical fruits: IV. Methods in the investigation of respiration with special reference to banana. Ann. Bot. 3:27–42.

    Google Scholar 

  • Wiskish, J.T. 1980. Control of the Krebs Cycle. In The Biochemistry of Plants. A Comprehensive Treatise, Vol. 2, D.D. Davies (ed.), pp. 243–278. New York: Academic Press.

    Google Scholar 

  • Woolley, 1962. Potato tuber tissue respiration and ventilation. Plant Physiol. 37:793–798.

    Article  CAS  Google Scholar 

  • Yang, C.C. and M.S. Chinnan. 1987. Modeling of color development of tomatoes in modified atmosphere storage, A.S.A.E. 30:548–553.

    Google Scholar 

  • Yang, C.C. and M.S. Chinnan. 1988a. Modeling the effect of CO2 on respiration and quality of stored tomatoes. A.S.A.E. 31:920–925.

    Google Scholar 

  • Yang, C.C. and M.S. Chinnan. 1988b. Computer modeling and color development of tomatoes stored in polymeric film. J. Food Sci. 55:869–872.

    Article  Google Scholar 

  • Yang, S.F. and N.E. Hoffman. 1984. Ethylene biosynthesis and its regulation. Annu. Rev. Plant Physiol. 35:155–189.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Solomos, T. (1994). Some Biological and Physical Principles Underlying Modified Atmosphere Packaging. In: Wiley, R.C. (eds) Minimally Processed Refrigerated Fruits & Vegetables. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2393-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2393-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6014-8

  • Online ISBN: 978-1-4615-2393-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics