Advertisement

Methanogenesis pp 253-303 | Cite as

Conversion of Methanol and Methylamines to Methane and Carbon Dioxide

  • Jan T. Keltjens
  • Godfried D. Vogels
Part of the Chapman & Hall Microbiology Series book series (CHMBS)

Abstract

The first report on methane formation from a methylated one-carbon compound, notably methanol, goes back to 1920 (Groenewegen, 1920). In the thirties, methylotrophic methanogens were systematically studied in the laboratory of Kluy ver and Van Niel (1936). Here, Barker (1936) enriched an organism, then called Methanococcus mazei, which was capable of growth not only on methanol, but also on butanol and acetone. The organism was not pure and the original cultures were lost. Only about 40 years later, the methanogen that met the original description was reisolated and renamed Methanosarcina mazei (Mah, 1980; Mah and Kuhn, 1984). The first methylotroph obtained in axenic culture, and in fact one of the first pure methanogenic species, was isolated by Schnellen (1936), a student of Kluyver. Again, the original cultures of the organism, Methanosarcina barkeri, were lost. M. barkeri has been reisolated as a number of distinct strains from a variety of sources. The type strain, MS, was obtained by Bryant in 1966 (Bryant, 1966; Bryant and Boone, 1987). Biochemically, M. barkeri is the best studied methylotrophic methanogen and most of the work reviewed in this chapter refers to it.

Keywords

Methanol Oxidation Methanol Conversion Methanogenic Bacterium Methanosarcina Barkeri Methyl Group Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aceti, D.J., and J.G. Ferry. 1988. Purification and characterization of acetate kinase from acetate grown Methanosarcina thermophila. Evidence for regulation of synthesis. J. Biol. Chem. 263:15444–15448.PubMedGoogle Scholar
  2. Ahn, Y.H., J.A. Krrzycki and H.G. Floss. 1991. Steric course of the reduction of ethyl coenzyme M to ethane catalyzed by methyl coenzyme M reductase from Methanosarcina barkeri. J. Am. Chem. Soc. 113:4700–4701.CrossRefGoogle Scholar
  3. Ahring, B.K., P. Westermann and R.A. Mah. 1991. Hydrogen inhibition of acetate metabolism and kinetics of hydrogen consumption by Methanosarcina thermophila TM-1. Arch. Microbiol. 157:38–42.CrossRefGoogle Scholar
  4. Albracht, S.P.J., D. Ankel-Fuchs, R. Böcher, J. Ellermann, J. Moll, J.W. van der Zwaan, and R.K. Thauer. 1988. Five new EPR signals assigned to nickel in methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum, strain Marburg. Biochim. Biophys. Acta 955:86–102.CrossRefGoogle Scholar
  5. Balch, W.E., L.J. Magrum, C.R. Woese, and R.S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296.PubMedGoogle Scholar
  6. Baresi, L. 1984. Methanogenic cleavage of acetate by lysates of Methanosarcina barkeri. J. Bacteriol. 160:365–370.PubMedGoogle Scholar
  7. Baresi, L., and R.S. Wolfe. 1981. Levels of coenzyme F420, coenzyme M, hydrogenase and methylcoenzyme M methylreductase in acetate-grown Methanosarcina. Appl. Environ. Microbiol. 41:388–391.PubMedGoogle Scholar
  8. Barker, H.A. 1936. Studies upon the methane-producing bacteria. Arch. Mikrobiol. 4:420–438.CrossRefGoogle Scholar
  9. Bhatnagar, L., J.A. Krzycki, and J.G. Zeikus. 1987. Analysis of hydrogen metabolism in Methanosarcina barkeri: regulation of hydrogenase and role of CO-dehydrogenase in H2 production. FEMS Microbiol. Lett. 41:337–343.CrossRefGoogle Scholar
  10. Bhosale, S.B., S.S. Nilegeonkar, T.Y. Yeole, and D.C. Kshirsagar. 1989. Evidence for the existence of multiple forms of hydrogenase in Methanosarcina. Biochem. Int. 19:1095–1108.Google Scholar
  11. Bhosale, S.B., T.Y. Yeole, and D.C. Kshirsagar. 1990. Distribution of transition metal ions in multiple forms of Methanosarcina hydrogenase. FEMS Microbiol. Lett. 70:241–248.Google Scholar
  12. Biavati, B., M. Vasta, and J.G. Ferry. 1988. Isolation and characterization of “Methanosphaera cuniculi” sp.nov. Appl. Environ. Microbiol. 54:768–771.PubMedGoogle Scholar
  13. Blaut, M., and G. Gottschalk. 1982. Effect of trimethylamine on acetate utilization by Methanosarcina barkeri. Arch. Microbiol. 133:230–235.CrossRefGoogle Scholar
  14. Blaut, M., and G. Gottschalk. 1984. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur. J. Biochem. 141:217–222.PubMedCrossRefGoogle Scholar
  15. Blaut, M., and G. Gottschalk. 1985. Evidence for a chemiosmotic mechanism of ATP synthesis in methanogenic bacteria. Trends Biochem. Sci. 10:486–489.CrossRefGoogle Scholar
  16. Blaut, M., V. Müller, K. Fiebig, and G. Gottschalk. 1985. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde. J. Bacteriol. 164:95–101.PubMedGoogle Scholar
  17. Blaut, M., V. Müller, and G. Gottschalk. 1986. Mechanism of ATP synthesis and role of sodium ions in Methanosarcina barkeri growing on methanol. Syst. Appl. Microbiol. 7:354–357.CrossRefGoogle Scholar
  18. Blaut, M., S. Peinemann, U. Deppenmeier, and G. Gottschalk. 1990. Energy transduction in vesicles of the methanogenic strain Göl. FEMS Microbiol. Rev. 87:367–372.Google Scholar
  19. Blaylock, B.A. 1968. Cobamide-dependent methanol-cyanocob(I)alamin methyltransferase of Methanosarcina barkeri. Arch. Biochem. Biophys. 124:314–324.PubMedCrossRefGoogle Scholar
  20. Blaylock, B.A., and T.C. Stadtman, 1963. Biosynthesis of methane from the methyl moiety of methylcobalamin. Biochem. Biophys. Res. Commun. 11:34–38.PubMedCrossRefGoogle Scholar
  21. Blaylock, B.A., and T.C. Stadtman. 1964. Enzymic formation of methylcobalamin in Methanosarcina barkeri extracts. Biochem. Biophys. Res. Commun. 17:475–480.CrossRefGoogle Scholar
  22. Blaylock, B.A., and T.C. Stadtman. 1966. Methane biosynthesis by Methanosarcina barkeri. Properties of the soluble enzyme system. Arch. Biochem. Biophys. 116:138–152.PubMedCrossRefGoogle Scholar
  23. Blotevogel, K.-H., and U. Fischer. 1989. Transfer of Methanococcus frisius to the genus Methanosarcina as Methanosarcina frisia comb. nov. Int. J. Syst. Bacteriol. 39:91–92.CrossRefGoogle Scholar
  24. Blotevogel, K.-H., and A.J.L. Macario. 1989. Antigenic relationship of Methanococcus frisius. Syst. Appl. Microbiol. 11:148–150.CrossRefGoogle Scholar
  25. Bobik, T.A., M.I. Donnelly, K.L. Rinehart, Jr., and R.S. Wolfe. 1987. Structure of a methanofuran derivative found in cell extracts in Methanosarcina barkeri. Arch. Biochem. Biophys. 254:430–436.PubMedCrossRefGoogle Scholar
  26. Bokranz, M., and A. Klein. 1987. Nucleotide sequence of the methyl coenzyme M reductase gene cluster from Methanosarcina barkeri. Nucleic Acids Res. 15:4350–4351.PubMedCrossRefGoogle Scholar
  27. Boone, D.R., and R.A. Man. 1989. Methanogenic archaebacteria. In Bergey’s Manual of Systematic Bacteriology, Vol. 3, J.T. Staley, M.P. Bryant, N. Pfennig, and J.G. Holt (eds.), pp. 2173–2216. Williams and Wilkins, Baltimore.Google Scholar
  28. Boone, D.R., J.A.G.F. Menaia, J.E. Boone, and R.A. Mah. 1987. Effects of hydrogen pressure during growth and effects of pregrowth with hydrogen on acetate degradation by Methanosarcina species. Appl. Environ. Microbiol. 53:83–87.PubMedGoogle Scholar
  29. Börner, G., M. Karrasch, and R.K. Thauer. 1989. Formylmethanofuran dehydrogenase activity in cell extracts of Methanobacterium thermoautotrophicum and of Methanosarcina barkeri. FEBS Lett. 244:21–25.CrossRefGoogle Scholar
  30. Börner, G., M. Karrasch, and R.K. Thauer. 1991. Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg). FEBS Lett. 290:31–34.PubMedCrossRefGoogle Scholar
  31. Bott, M., B. Eikmanns, and R.K. Thauer. 1986. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur. J. Biochem. 159:393–398.PubMedCrossRefGoogle Scholar
  32. Bott, M., and R.K. Thauer. 1989. Proton translocation coupled to the oxidation of carbon monoxide to carbon dioxide and hydrogen in Methanosarcina barkeri. Eur. J. Biochem. 179:469–472.PubMedCrossRefGoogle Scholar
  33. Breitung, J., G. Börner, M. Karrrasch, A. Berkessel, and R.K. Thauer. 1990. N-Furfurylformamide as a pseudo-substrate for formylmethanofuran-converting enzymes from methanogenic bacteria. FEBS Lett. 268:257–260.PubMedCrossRefGoogle Scholar
  34. Beitung, J., and R.K. Thauer. 1990. Formylmethanofuran:tetrahydromethanopterin formyltransferase from Methanosarcina barkeri: identification of N5-formyltetrahydro-methanopterin as the product. FEBS Lett. 275:226–231.CrossRefGoogle Scholar
  35. Bryant, M.P., and D.R. Boone. 1987. Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri. Inst. J. Syst. Bacteriol. 37:169–170.CrossRefGoogle Scholar
  36. Clarens, M., and R. Moletta. 1990. Kinetic studies of acetate fermentation by Methanosarcina sp. MSTA-1. Appl. Microbiol. Biotechnol. 33:239–244.PubMedCrossRefGoogle Scholar
  37. Daniels, L., and J.G. Zeikus. 1978. One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. J. Bacteriol. 136:75–84.PubMedGoogle Scholar
  38. Deppenmeier, U., M. Blaut, A. Jussofie, and G. Gottschalk. 1988. A methyl-CoM methylreductase system from methanogenic bacterium strain Göl not requiring ATP for activity. FEBS Lett. 241:60–64.PubMedCrossRefGoogle Scholar
  39. Deppenmeier, U., M. Blaut, and G. Gottschalk. 1989. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors. Eur. J. Biochem. 186:317–323.PubMedCrossRefGoogle Scholar
  40. Deppenmeier, U., M. Blaut, and G. Gottschalk. 1990a. Membrane-bound F420H2-dependent heterodisulfide reductase in methanogenic bacterium strain Göl and Methanolobus tindarius. FEBS Lett. 261:199–203.CrossRefGoogle Scholar
  41. Deppenmeier, U., M. Blaut, A. Mahlmann, and G. Gottschalk. 1990b. Reduced coenzyme F420:heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc. Natl. Acad. Sci USA 87:9449:9453.PubMedCrossRefGoogle Scholar
  42. Deppenmeier, U., M. Blaut, and G. Gottschalk. 1991. H2:heterodisulfideoxidoreductase, a second energy-conserving system in the methanogenic strain Göl. Arch. Microbiol. 155:272–277.CrossRefGoogle Scholar
  43. Eikmanns, B., and R.K. Thauer. 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barken grown on acetate. Arch. Microbiol. 138:365–370.CrossRefGoogle Scholar
  44. Enßle, M., G. Zirngibl, D. Linder, and R.K. Thauer. 1991. Coenzyme F420-dependent N5,N10-methylene-tetrahydromethanopterin dehydrogenase in methanol-grown Methanosarcina barkeri. Arch. Microbiol. 155:483–490.CrossRefGoogle Scholar
  45. Fauque, G., M. Teixeira, I. Moura, P.A. Lespinat, A.V. Xavier, D.V. DerVartanian, H.D. Peck, Jr., and J.G. Moura. 1984. Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800). Eur. J. Biochem. 142:21–28.PubMedCrossRefGoogle Scholar
  46. Ferguson, T.J., and R.A. Man. 1983. Effect of H2-CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl. Environ. Microbiol. 64:348–355.Google Scholar
  47. Fiebig, K., and B. Friedrich. 1989. Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro). Eur. J. Biochem. 184:79–88.PubMedCrossRefGoogle Scholar
  48. Fischer, R., and R.K. Thauer. 1988. Methane formation from acetyl phosphate in cell extracts of Methanosarcina barkeri. Dependence of the reaction on coenzyme A. FEBS Lett. 228:249–253.CrossRefGoogle Scholar
  49. Fischer, R., and R.K. Thauer. 1989. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch. Microbiol. 151:45–465.CrossRefGoogle Scholar
  50. Fischer, R., and R.K. Thauer. 1990a. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: isotope exchange between carbon dioxide and the carbonyl group of acetyl-CoA, and the role of hydrogen. Arch. Microbiol. 153:156–162.CrossRefGoogle Scholar
  51. Fischer, R., and R.K. Thauer. 1990b. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269:368–372.PubMedCrossRefGoogle Scholar
  52. Fox, J.A., D.J. Livingston, W.H. Orme-Johnson, and C.T. Walsh. 1987. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacteriwn thermautotrophicum: 1. Purification and characterization. Biochemistry 26:4219–4227.PubMedCrossRefGoogle Scholar
  53. Friedmann, H.C., A. Klein, and R.K. Thauer. 1990. Structure and function of the nickel porphinoid, coenzyme F430, and of its enzyme, methyl coenzyme reductase. FEMS Microbiol. Rev. 87:339–348.CrossRefGoogle Scholar
  54. Garcia. J.L. 1990. Taxonomy and ecology of methanogens. FEMS Microbiol. Rev. 87:297–308.CrossRefGoogle Scholar
  55. Gorris, L.G.M., and C. van der Drift. 1986. Methanogenic cofactors in pure cultures of methanogens in relation to substrate utilization. In Progress in Biotechnology, Vol. 2. H.C. Dubourguier, L. Montreuil, C. Romond, P. Sautière, and J. Guillaume (eds.), pp. 144–150. Elsevier, Amsterdam.Google Scholar
  56. Gottschalk, G., and M. Blaut. 1990. Generation of proton and sodium motive forces in methanogenic bacteria. Biochim. Biophys. Acta 1018:263–266.CrossRefGoogle Scholar
  57. Grahame, D.A. 1989. Different isozymes of methylcobalamin:2-mercaptoethanesulfonate methyltransferase predominate in methanol- versus acetate-grown Methanosarcina barkeri. J. Biol. Chem. 264:12890–12894.PubMedGoogle Scholar
  58. Groenewegen, J. 1920. Mededelingen v.d. Burgert. Geneesk, Dienst in Ned. Indië 1:66.Google Scholar
  59. Haase, P., U. Deppenmeier, M. Blaut, and G. Gottschalk. 1992. Purification and characterization of F420H2-dehydrogenase from Methanolobus tindarius. Eur. J. Biochem. 203:527–531.PubMedCrossRefGoogle Scholar
  60. Hartzeil, P.L., and R.S. Wolfe. 1986. Comparative studies of component C from the methylreductase system of different methanogens. Syst. Appl. Microbiol. 7:376–382.CrossRefGoogle Scholar
  61. Hatchikian, E.C., M. Bruschi, N. Forget, and M. Scandellari. 1982. Electron transport components from methanogenic bacteria: the ferredoxin from Methanosarcina barkeri (strain Fusaro). Biochem. Biophys. Res. Commun. 109:1316–1323.PubMedCrossRefGoogle Scholar
  62. Hausinger, R.P., I. Moura, J.J.G. Moura, A.V. Xavier, M.H. Santos, J. LeGall, and J.B. Howard. 1982. Amino acid sequence of a 3Fe:3S ferredoxin from the “archaebacterium” Methanosarcina barkeri (DSM 800). J. Biol. Chem. 257:14192–14197.PubMedGoogle Scholar
  63. Hedderich, R., A. Berkessel, and R.K. Thauer. 1990. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 193:255–261.PubMedCrossRefGoogle Scholar
  64. Heine-Dobbernack, E., S.M. Schoberth, and H. Sahm. 1988. Relationship of intracellular coenzyme F420 content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl. Environ. Microbiol. 54:454–459.PubMedGoogle Scholar
  65. Hippe, H., D. Caspari, K. Fiebig, and G. Gottschalk. 1979. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. USA 76:494–498.PubMedCrossRefGoogle Scholar
  66. Höllriegl, V., P. Scherer, and P. Renz. 1983. Isolation and characterization of the Co-methyl and Co-aquo derivative of 5-hydroxybenzimidazolylcobamide (Factor III) from Methanosarcina barkeri grown on methanol. FEBS Lett. 151:156–158.CrossRefGoogle Scholar
  67. Hoppert, M. and F. Mayer. 1990. Electron microscopy of native and artificial methyReductase high-molecular-weight complexes in strain Göl and Methanococcus voltae. FEBS Lett. 267:33–37.PubMedCrossRefGoogle Scholar
  68. Hutten, T.J., M.H. de Jong, B.P.H. Peeters, C. van der Drift, and G.D. Vogels. 1981. Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts of Methanosarcina barkeri. J. Bacteriol. 145:27–34.PubMedGoogle Scholar
  69. Jablonski, P.E., A.A. DiMarco, T.A. Bobik, M.C. Cabell, and J.G. Ferry. 1990. Protein content and enzyme activities in methanol- and acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:1271–1275.PubMedGoogle Scholar
  70. Jablonski, P.E., and J.G. Ferry, 1991. Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:2481–2487.PubMedGoogle Scholar
  71. Jain, M.K., L. Bhatnagar, and J.G. Zeikus. 1988. A taxonomic overview of methanogens. Indian J. Microbiol. 28:143–177.Google Scholar
  72. Jetten, M.S.M., A.J.M. Stams, and A.J.B. Zehnder. 1990. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73:339–344.CrossRefGoogle Scholar
  73. Jussofie, A. 1984. Cytochromuntersuchungen aus methanogenen und acetogenen Bakterien. Ph.D. Thesis. University of Göttingen.Google Scholar
  74. Jussofie, A., and G. Gottschalk. 1986. Further studies on the distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 37:15–18.CrossRefGoogle Scholar
  75. Kaesler, B., and P. Schönheit. 1989a. The role of sodium ions in methanogenesis. Formaldehyde oxidation to carbon dioxide and 2-hydrogen in methanogenic bacteria is coupled with primary electrogenic sodium translocation at a stoichiometry of 2–3 sodium/carbon dioxide. Eur. J. Biochem. 184:223–232.PubMedCrossRefGoogle Scholar
  76. Kaesler, B., and P. Schönheit. 1989b. The sodium cycle in methanogenesis. Carbon dioxide reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of sodium generated by formaldehyde reduction to methane. Eur. J. Biochem. 186:309–316.PubMedCrossRefGoogle Scholar
  77. Karrasch, M., M. Bott, and R.K. Thauer. 1989. Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch. Microbiol. 151:137–142.CrossRefGoogle Scholar
  78. Karrasch, M., G. Börner, M. Enßle, and R.K. Thauer. 1989. Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett. 253:226–230.PubMedCrossRefGoogle Scholar
  79. Karrasch, M., G. Börner, M. Enßle, and R.K. Thauer. 1990. The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur. J. Biochem. 194:367–372.PubMedCrossRefGoogle Scholar
  80. Karrasch, M., G. Börner., and R.K. Thauer. 1990. The molybdenum cofactors of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett. 274:48–52.PubMedCrossRefGoogle Scholar
  81. Kell, D.B., and J.G. Morris. 1979. Oxidation and reduction potentials of coenzyme M (2-mercaptoethane sulfonate) at the mercury electrode. FEBS Lett. 108:481–484.PubMedCrossRefGoogle Scholar
  82. Keltjens, J.T., J.A.M. Brugman, J.M.A. Kesseleer, B.W.J, te Brömmelstroet, C. Van der Drift, and G.D. Vogels. 1992. 5-Formyl-5,6,7,8-tetrahydromethanopterin is the intermediate in the process of methanogenesis in Methanosarcina barkeri. BioFactors 3:249–255.PubMedGoogle Scholar
  83. Keltjens, J.T., B.W. te Brömmelstroet, S.W.M. Kengen, C. van der Drift, and G.D. Vogels. 1990. 5,6,7,8-tetrahydromethanopterin-dependentenzymes involved in methanogenesis. FEMS Microbiol. Rev. 87:327–332.CrossRefGoogle Scholar
  84. Keltjens, J.T., and C. van der Drift. 1986. Electron transfer reactions in methanogens. FEMS Microbiol. Rev. 39:259–303.CrossRefGoogle Scholar
  85. Kemner, J.M., J.A. Krzycki, R.C. Prince, and J.G. Zeikus. 1987. Spectroscopic and enzymic evidence for membrane-bound electron transport carriers and hydrogenase and their relation to cytochrome b function in Methanosarcina barkeri. FEMS Microbiol. Lett. 48:267–272.CrossRefGoogle Scholar
  86. Kenealy, W.R., and J.G. Zeikus. 1982. One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J. Bacteriol. 151:932–941.PubMedGoogle Scholar
  87. Kengen, S.W.M., P.J.H. Daas, E.F.G. Duits, J.T. Keltjens, C. van der Drift, and G.D. Vogels. 1992. Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin:coenzyme M methytransferase reaction in Methanobacterium thermoautotrophicum. Biochim. Biophys. Acta 1118:249–260.PubMedCrossRefGoogle Scholar
  88. Kiene, R.P., R.S. Oremland, A. Catena, L.G. Miller, and D.G. Capone. 1986. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 52:1037–1045.PubMedGoogle Scholar
  89. King, G.M. 1984. Utilization of hydrogen, acetate, and “non-competitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol. J. 3:275–280.CrossRefGoogle Scholar
  90. Klein, A., R. Allmansberger, M. Bokranz, S. Knaub, B. Müller, and E. Muth. 1988. Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria. Mol. Gen. Genet. 213:409–420.PubMedCrossRefGoogle Scholar
  91. Kluyver, A.J., and C.B. van Niel. 1936. Prospects for a natural system of classification of bacteria. Zbl. Bakt. Parasitenk. Infektionskr. Hyg. Abt. 2 94:369–403.Google Scholar
  92. König, H., and K.O. Stetter. 1982. Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zbl. Bakt. Hyg. I Abt. Orig. C 3:478–490.Google Scholar
  93. Kräutler, B. 1987. The porphinoids- versatile biological catalyst molecules. Chimia 41:277–292.Google Scholar
  94. Kräutler, B. 1990. Chemistry of methylcorrinoids related to their roles in bacterial C1 metabolism. FEMS Microbiol. Rev. 87:349–354.CrossRefGoogle Scholar
  95. Krzycki, J.A., L.J. Lehman, and J.G. Zeikus. 1985. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase. J. Bacteriol. 163:1000–1006.PubMedGoogle Scholar
  96. Krzycki, J.A., J.B. Morgan, R. Conrad, and J.G. Zeikus. 1987. Hydrogen metabolism during methanogenesis from acetate by Methanosarcina barkeri. FEMS Microbiol. Lett. 40:193–198.CrossRefGoogle Scholar
  97. Krzycki, J. A., and R.C. Prince. 1990. EPR observation of carbon monoxide dehydrogenase, methylreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate. Biochim. Biophys. Acta 1015:53–60.CrossRefGoogle Scholar
  98. Krzycki, J.A., R.H. Wolkin, and J.G. Zeikus. 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J. Bacteriol. 149:247–254.PubMedGoogle Scholar
  99. Krzycki, J.A., and J.G. Zeikus. 1984. Acetate catabolism by Methanosarcina barkeri: hydrogen-dependent methane production from acetate by a soluble cell protein fraction. FEMS Microbiol. Lett. 25:27–32.CrossRefGoogle Scholar
  100. Kühn, W., K. Fiebig, H. Hippe, R.A. Mah, B.A. Huser, and G. Gottschalk. 1983. Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 20:407–410.CrossRefGoogle Scholar
  101. Kühn, W., and G. Gottschalk, 1983. Characterization of the cytochromes occurring in Methanosarcina species. Eur. J. Biochem. 135:89–94.PubMedCrossRefGoogle Scholar
  102. Lexa, D., and Saveant. 1983. The electrochemistry of vitamin B12. Ace. Chem. Res. 16:235–243.CrossRefGoogle Scholar
  103. Liu, Y., D.R. Boone, and C. Choy. 1990. Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40:111–116.CrossRefGoogle Scholar
  104. Liu, Y., D.R. Boone, R. Sleat, and R.A. Mah. 1985. Methanosarcina mazei LYC, a new methanogenic isolate which produces a disaggregating enzyme. Appl. Environ. Microbiol. 49:608–613.PubMedGoogle Scholar
  105. Livingston, D.J., J.A. Fox, W.H. Orme-Johnson, and C.T. Walsh. 1987. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 2. Kinetic and hydrogen-transfer studies. Biochemistry 26:4228–4236.PubMedCrossRefGoogle Scholar
  106. Lovley, D.R., and J.G. Ferry. 1985. Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl. Environ. Microbiol. 49:247–247.PubMedGoogle Scholar
  107. Lundie, L.L., Jr., and J.G. Ferry. 1989. Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. J. Biol. Chem. 264:18392–18396.PubMedGoogle Scholar
  108. Ma, K., and R.K. Thauer. 1990. N5,N10-methylenetetrahydromethanopterin reductase from Methanosarcina barkeri. FEMS Microbiol. Lett. 70:119–124.Google Scholar
  109. Mah, R.A. 1980. Isolation and characterization of Methanococcus mazei. Curr. Microbiol. 3:321–326.CrossRefGoogle Scholar
  110. Mah, R.A., and D.A. Kühn. 1984. Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend, and conservation of the genus Methanococcus (approved lists 1980) with Methanococcus vannielii (approved lists 1980) as the type species. Int. J. Syst. Bacteriol. 34:263–265.CrossRefGoogle Scholar
  111. Mah, R.A., M.R. Smith, T. Ferguson, and S. Zinder. 1981. Methanogenesis from H2-CO2, methanol and acetate by Methanosarcina . In Microbial Growth on C 1 Compounds, H. Dalton (ed.), pp. 131–142. Heyden and Son, London.Google Scholar
  112. Mathrani, I.M., D.R. Boone, R.A. Mah, G.E. Fox, and P.P. Lau. 1988. Methanohalophilus zhilinae, sp. nov., an alkaliphilic, halophilic, methylotrophic, methanogen. Int. J. Syst. Bacteriol. 38:139–142.PubMedCrossRefGoogle Scholar
  113. Matthews, R.G., R.V. Banerjee, and S.W. Ragsdale. 1990. Cobamide-dependent methyl transferases. BioFactors 2:147–152.PubMedGoogle Scholar
  114. Mayer, F., M. Rohde, M. Salzmann, A. Jussofie, and G. Gottschalk, 1988. The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic strain Göl that contains components of the methylreductase system. J. Bacteriol. 170:1438–1444.PubMedGoogle Scholar
  115. Miller, T.L., and M.J. Wolin. 1983. Oxidation of hydrogen and reduction of methanol to methane is the sole energy source for a methanogen isolated from human feces. J. Bacteriol. 153:1051–1055.PubMedGoogle Scholar
  116. Miller, T.L., and M.J. Wolin. 1985. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–122.PubMedCrossRefGoogle Scholar
  117. Min, H., and S.H. Zinder. 1989. Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl. Environ. Microbiol. 55:488–491.PubMedGoogle Scholar
  118. Mortenson, L.E., and Thornley, 1979. Structure and function of the nitrogenase. Annu. Rev. Biochem. 48:387–418.PubMedCrossRefGoogle Scholar
  119. Moura, I., J.J.G. Moura, B.H. Huynh, H. Santos, J. LeGall, and A.V. Xavier. 1982. Ferredoxin from Methanosarcina barkeri: Evidence for the presence of a three-iron centre. Eur. J. Biochem. 126:95–98.PubMedCrossRefGoogle Scholar
  120. Müller, V., M. Blaut, and G. Gottschalk. 1986. Utilization of methanol plus hydrogen by Methanosarcina barkeri for methanogenesis and growth. Appl. Environ. Microbiol. 52:269–274.PubMedGoogle Scholar
  121. Müller, V., M. Blaut, and G. Gottschalk. 1987a. Oxidation of trimethylamine to the level of formaldehyde by Methanosarcina barkeri is dependent on the proton-motive force. FEMS Microbiol. Lett. 43:183–186.CrossRefGoogle Scholar
  122. Müller, V., M. Blaut, and G. Gottschalk. 1987b. Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur. J. Biochem. 162:461–466.PubMedCrossRefGoogle Scholar
  123. Müller, V., M. Blaut, G. Gottschalk, 1988. The transmembrane electrochemical gradient of sodium as driving force for methanol oxidation in Methanosarcina barkeri. Eur. J. Biochem. 172:601–606.PubMedCrossRefGoogle Scholar
  124. Müller, V., M. Blaut, R. Heise, C. Winner, and G. Gottschalk. 1990. Sodiumbioenergetics in methanogens and acetogens. FEMS Microbiol. Rev. 87:373–376.CrossRefGoogle Scholar
  125. Müller, V., G. Kozianowski, M. Blaut, and G. Gottschalk, 1987. Methanogenesis from trimethylamine + hydrogen by Methanosarcina barkeri is coupled to ATP formation by a chemiosmotic mechanism. Biochim. Biophys. Acta 892:207–212.CrossRefGoogle Scholar
  126. Müller, V., C. Winner, and G. Gottschalk, 1988. Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen by Methanosarcina barken. Eur. J. Biochem. 178:519–525.PubMedCrossRefGoogle Scholar
  127. Nakatsugawa, N., and J.P. Horikoshi. 1989a. Alkalophilic, methanogenic bacteria (Methanosarcina alkaliphilum) and fermentation method for the fast production of methane. Research Development Corporation of Japan, No. 33134 EP.Google Scholar
  128. Nakatsugawa, N., and J.P. Horikoshi. 1989b. Extremely halophilic methanogenic archae-bacteria and process for the production of methane. Research Development Corporation of Japan, No. 313900 EP.Google Scholar
  129. Naumann, E., K. Fahlbusch, and G. Gottschalk. 1984. Presence of a trimethylamine:HS-coenzyme M methyltransferase in Methanosarcina barkeri. Arch. Microbiol. 138:79–83.CrossRefGoogle Scholar
  130. Nelson, M.J.K., and J.G. Ferry. 1984. Carbon monoxide-dependent methylcoenzyme M methylreductase in acetotrophic Methanosarcina spp. J. Bacteriol. 160:526–532.PubMedGoogle Scholar
  131. Ni S., and D.R. Boone. 1991. Isolation and characterization of a dimethyl sulfide-degrading methanogen. Methanolobus siciliae HI350, from an oil well. Characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int. J. Syst. Bacteriol. 41:410–416.CrossRefGoogle Scholar
  132. O’Brien, J.M., R.H. Wolkin, T.T. Mönch, J.B. Morgan, and J.G. Zeikus. 1984. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J. Bacteriol. 158:373–375.PubMedGoogle Scholar
  133. Obraztsova, A.Y., O.V. Shipin, L.V. Bezrukova, and S.S. Belyaev. 1987. Properties the coccoid methylotrophic methanogen Methanococcoides euhalobius sp.nov. Microbiology (Eng. trans.) 56:523–527.Google Scholar
  134. Ollivier, B., A. Lombardo, and J.L. Garcia. 1984. Isolation and characterization of a new thermophilic Methanosarcina strain MP. Ann. Inst. Pasteur Microbiol. 135:187–198.CrossRefGoogle Scholar
  135. Oremland, R.S., R.P. Kiene, I. Mathrani, M.J. Whiticar, and D.R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. App. Environ, Microbiol. 55:994–1002.Google Scholar
  136. Paterek, J.R., and P.H. Smith. 1985. Isolation and characterization of a halophilic methanogen from Great Salt Lake. Appl. Environ. Microbiol. 50:877–881.PubMedGoogle Scholar
  137. Paterek, J.R., and P.H. Smith. 1988. Methanohalophilus mahii, sp. nov., a methylotrophic halophilic methanogen. Int. J. Syst. Bacteriol. 38:122–123.CrossRefGoogle Scholar
  138. Peck, M.W. 1989. Changes in concentrations of coenzyme F420 analogs during batch growth of Methanosarcina barkeri and Methanosarcina mazei. Appl. Environ. Microbiol. 55:940–945.PubMedGoogle Scholar
  139. Peinemann, S., V. Müller, M. Blaut, and G. Gottschalk, 1988. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. J. Bacteriol. 170:1369–1372.PubMedGoogle Scholar
  140. Pol, A., C. van der Drift, and G.D. Vogels. 1982. Corrinoids from Methanosarcina barkeri: structure of the α-ligand. Biochem. Biophys. Res. Commun. 108:731–737.PubMedCrossRefGoogle Scholar
  141. Rospert, S., R. Böcher, S.P.J. Albracht, and R.K. Thauer. 1991. Methylcoenzyme M reductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum. FEBS Lett. 291:371–375.PubMedCrossRefGoogle Scholar
  142. Rouvière, P.E., C.H. Kuhner, and R.S. Wolfe. 1990. Biochemistry of the methylcoenzyme M methylreductase system, p. 259–267. In J.P. Bélaich (ed.), Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum Press, New York.Google Scholar
  143. Rouvière, P.E., and R.S. Wolfe. 1987. Use of subunits of the methylreductase protein for taxonomy of methanogenic bacteria. Arch. Microbiol. 148:253–259.CrossRefGoogle Scholar
  144. Rouvière, P.E., and Wolfe, R.S. 1988. Novel biochemistry of methanogenesis. J. Biol. Chem. 263:7913–7916.PubMedGoogle Scholar
  145. Schnellen, C.G.T.P. 1946. Onderzoekingen over de methaangisting. Ph.D. thesis, Delft University of Technology.Google Scholar
  146. Schwörer, B., and R.K. Thauer. 1991. Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch. Microbiol. 155:459–465.CrossRefGoogle Scholar
  147. Shapiro, S. 1982. Do corrinoids function in the methanogenic dissimilation of C1 compounds by Methanosarcina barkeri? Can. J. Microbiol. 28:629–635.CrossRefGoogle Scholar
  148. Shapiro, S., and R.S. Wolfe. 1980. Methy 1-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri. J. Bacteriol. 141:728–734.PubMedGoogle Scholar
  149. Smith, M.R., and R.A. Man. 1978. Growth and methanogenesis by Methanosarcina barkeri strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36:870–879.PubMedGoogle Scholar
  150. Sowers, K.R., and J.G. Ferry. 1983. Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl. Environ. Microbiol. 45:684–690.PubMedGoogle Scholar
  151. Sowers, K.R., S.F. Baron, and J.G. Ferry. 1984. Methanosarcina acetivorans sp.nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978.PubMedGoogle Scholar
  152. Sowers, K.R., J.L. Johnson, and J.G. Ferry. 1984. Phylogenetic relationships among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 34:444–450.CrossRefGoogle Scholar
  153. Stetter, K.O. 1989. Genus Methanolobus. In Bergey’s Manual of Systematic Bacteriology, Vol. 3, J.T. Staley, M.P. Bryant, N. Pfennig, and J.G. Holt (eds.), pp. 2205–2207. Williams and Wilkins, Baltimore.Google Scholar
  154. Stupperich, E., and B. Kräutler. 1988. Pseudo vitamin B12 or 5-hydroxybenzimidazolyl-cobamide are the corrinoids found in methanogenic bacteria. Arch. Microbiol. 149:268–271.CrossRefGoogle Scholar
  155. Taylor, C.D., and R.S. Wolfe. 1974. Structure and methylation of coenzyme M (HSCH2CH2SO3). J. Biol. Chem. 249:4879–4885.PubMedGoogle Scholar
  156. te Brömmelstroet, B.W., C.M.H. Hensgens, W.J. Geerts, J.T. Keltjens, G. van der Drift, and G.D. Vogels. 1990. Purification and properties of 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanosarcina barkeri. J. Bacteriol. 172:564–571.Google Scholar
  157. te Brömmelstroet, B.W., W.G. Geerts, J.T. Keltjens, C. van der Drift, and G.D. Vogels. 1991. Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri. Biochim. Biophys. Acta 1079:293–302.CrossRefGoogle Scholar
  158. Terlesky, K.C., and J.G. Ferry. 1988a. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4075–4079.PubMedGoogle Scholar
  159. Terlesky, K.C., and J.G. Ferry. 1988b. Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4080–4082.PubMedGoogle Scholar
  160. Terlesky, K.C., M.J.K. Nelson, and J.G. Ferry. 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J. Bacteriol. 168:1053–1058.PubMedGoogle Scholar
  161. Thauer, R.K. 1990. Energy metabolism of methanogenic bacteria. Biochim. Biophys. Acta 1018:256–259.CrossRefGoogle Scholar
  162. Thomas, I., H.C. Dubourguier, G. Prensier, P. Debeire, and G. Albagnac. 1987. Purification of component C from Methanosarcina mazei and immunolocalization in Methanosarcinaceae. Arch. Microbiol. 148:193–201.CrossRefGoogle Scholar
  163. Touzel, J.P. and G. Albagnac. 1984. Acetoclastic methanogens in anaerobic digestors, p. 35–39. In A.A. Antonopoulos (ed.), Proceedings of the 1st symposium on advances in processing municipal waste for fuel and chemicals, Minneapolis 15–17 August 1984.Google Scholar
  164. Touzel, J.P., D. Petroff, and G. Albagnac. 1985. Isolation and characterization of a new thermophilic Methanosarcina, the strain CHTI-55. Syst. Appl. Microbiol. 6:66–71.CrossRefGoogle Scholar
  165. VanBeelen, P., J.F.A. Labro, J.T. Keltjens, W.J. Geerts, G.D. Vogels, W.H. Laarhoven, W. Guijt, and C.A.G. Haasnoot, 1984. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur. J. Biochem. 139:359–365.CrossRefGoogle Scholar
  166. Van der Meijden, P., H.J. Heythuysen, A. Pouwels, C. van der Drift, and G.D. Vogels. 1983. Methyltransferases involved in the methanol conversion by Methanosarcina barkeri. Arch. Microbiol. 134:238–242.PubMedCrossRefGoogle Scholar
  167. Van der Meijden, P., H.J. Heythuysen, H.T. Sliepenbeek, F.P. Houwen, C. van der Drift, and G.D. Vogels. 1983. Activation and inactivation of methanol:2-mercaptoethanesulfonic acid methytransferase from Methanosarcina barkeri. J. Bacteriol. 153:6–11.PubMedGoogle Scholar
  168. Van der Meijden, P., L.P. Jansen, C. van der Drift, and G.D. Vogels. 1983. Involvement of corrinoids in the methylation of coenzyme M (2-mercaptoethanesulfonic acid) by methanol and enzymes from Methanosarcina barkeri. FEMS Microbiol. Lett. 19:247–251.CrossRefGoogle Scholar
  169. Van der Meijden, P., B.W. te Brömmelstroet, CM. Poirot, C. van der Drift, and G.D. Vogels. 1984. Purification and properties of methanol:5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri. J. Bacteriol. 160:629–639.PubMedGoogle Scholar
  170. Van der Meijden, P., C. van der Lest, C. van der Drift, and G.D. Vogels. 1984. Reductive activation of methanol:5-hydroxybenzimidazolylcobamide methyltransferase of Methanosarcina barkeri. Biochem. Biophys. Res. Commun. 118:760–766.PubMedCrossRefGoogle Scholar
  171. Van de Wijngaard, W.M.H., J. Creemers, G.D. Vogels, and C. van der Drift. 1990. Methanogenic pathways in Methanosphaera stadtmanae. FEMS Microbiol. Lett. 80:207–212.CrossRefGoogle Scholar
  172. Van de Wijngaard, W.M.H., R.L. Lugtigheid, and C. van der Drift. 1990. Reductive activation of the corrinoid-containing enzyme involved in the methyl group transfer between methyltetrahydromethanopterin and coenzyme M in Methanosarcina barkeri. Antonie v. Leeuwenhoek 60:1–6.CrossRefGoogle Scholar
  173. Van de Wijngaard, W.M.H., C. van der Drift, and G.D. Vogels. 1988. Involvement of a corrinoid in methanogenesis from acetate in Methanosarcina barkeri. FEMS Microbiol. Lett. 52:165–171.CrossRefGoogle Scholar
  174. Wagman, D.D., W.H. Evans, V.B. Parker, R.H. Schumm, S.M. Bailey, I. Halow, K.L. Churney, and R.L. Nuttall. 1983. Selected values of chemical thermodynamic properties. In CRC Handbook of Chemistry and Physics, R.C. Weast and M.J. Astle (eds.), pp. D52–D92. CRC Press, Boca Raton, FL.Google Scholar
  175. Weil, C.F., B.A. Sherf, and J.N. Reeve. 1989. A comparison of the methyl reductase genes and gene products. Can. J. Microbiol. 35:101–108.PubMedCrossRefGoogle Scholar
  176. Westermann, P., B.K. Ahring, and R.A. Mah. 1989. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55:514–515.PubMedGoogle Scholar
  177. White, R.H. 1988. Structural diversity among methanofurans from different methanogenic bacteria. J. Bacteriol. 170:4594–4597.PubMedGoogle Scholar
  178. Whitman, W.B. 1985. Methanogenic bacteria. In Bacteria- a Treatise on Structure and Function, Vol. VIII, Archaebacteria, R.S. Wolfe and CR. Woese (eds.), pp. 3–83. Academic Press, Orlando, FL.Google Scholar
  179. Winner, C., and G. Gottschalk. 1989. Hydrogen and carbon dioxide production from methanol or formaldehyde by the methanogenic bacterium strain Göl treated with 2-bromoethanesulfonic acid. FEMS Microbiol. Lett. 65:259–264.Google Scholar
  180. Yu, I.K., and F. Kawamura. 1987. Halomethanococcus doii gen. nov. spec, nov.: an obligately halophilic methanogenic bacterium from solar salt ponds. J. Gen. App. Microbiol. 33:303–310.CrossRefGoogle Scholar
  181. Zeikus, J.G. 1983. Metabolism of one-carbon compounds by chemotrophic anaerobes Adv. Microbial Physiol. 25:219–299.Google Scholar
  182. Zhilina, T.N. 1983. New Obligate halophilic methane-producing bacterium. Mikrobiologiya (English Translation) 52:290–297.Google Scholar
  183. Zhilina, T.N. and G. A. Zavarzin. 1987a. Methanosarcina vacuolata sp.nov., a vacuolated Methanosarcina. Int. J. Syst. Bacteriol. 37:281–283.CrossRefGoogle Scholar
  184. Zhilina, T.N., and G.A. Zavarzin. 1987b. Methanohalobiwn evestigatus n. gen., n. sp., the extremely halophilic methanogenic Archaebacterium. Dokl. Akad. Nauk. SSSR 293:464–468.Google Scholar
  185. Zinder, S.H. 1990. Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75:125–138.CrossRefGoogle Scholar
  186. Zinder, S.H., T. Anguish, and S.C. Card well. 1984. Effects of temperature on methanogenesis in a thermophilic anaerobic digestor. Appl. Environ. Microbiol. 47:808–813.PubMedGoogle Scholar
  187. Zinder, S.H., and A.F. Elias. 1985. Growth substrate effects on acetate and methanol catabolism in Methanosarcina sp. strain TM-1. J. Bacteriol. 163:317–323.PubMedGoogle Scholar
  188. Zinder, S.H., and R.A. Mah. 1979. Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2. Appl. Environ. Microbiol. 38:996–1008.PubMedGoogle Scholar
  189. Zinder, S.H., K.R. Sowers, and J.G. Ferry. 1985. Methanosarcina thermophila sp. nov., a thermophilic acetotrophic methane-producing bacterium. Int. J. System. Bacteriol. 35, 522–523.CrossRefGoogle Scholar
  190. Zydowsky, L.D., T.M. Zydowsky, E.S. Haas, J.W. Brown, J.N. Reeve, and H.G. Floss. 1987. Stereochemical course of methyl transfer from methanol to methyl coenzyme M in cell-free extracts of Methanosarcina barken. J. Am. Chem. Soc. 109:7922–7923.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Jan T. Keltjens
  • Godfried D. Vogels

There are no affiliations available

Personalised recommendations