Selection, Recombination, and DNA Polymorphism in Drosophila

  • Charles F. Aquadro
  • David J. Begun
  • Eric C. Kindahl


A goal of molecular population genetics is to provide an historical understanding of evolutionary processes occurring within and between closely related populations. While molecular techniques can, in principle, be applied to any species, the use of a model system such as Drosophila melanogasterhas proved to be enormously fruitful. One recent finding demonstrates the utility of using a well characterized genetic system: Levels of (presumably) neutral DNA variation are positively correlated with recombination rates in D. melanogaster.1 In this chapter we discuss recent results from our lab which extend this early result, discuss competing models to explain the pattern, and discuss empirical approaches to distinguish among these models.


Recombination Rate Effective Population Size Selective Sweep Amino Acid Difference Autosomal Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Begun, and C. F. Aquadro. (1992).Nature356, 519–520.PubMedCrossRefGoogle Scholar
  2. 2.
    M. Kimura. (1983).The Neutral Theory of Molecular EvolutionCambridge University Press.CrossRefGoogle Scholar
  3. 3.
    J. Maynard Smith, and J. Haigh. (1974).Genet. Res.23, 23–35.CrossRefGoogle Scholar
  4. 4.
    N. L. Kaplan, R. R. Hudson, and C. H. Langley. (1989).Genetics123, 887–899.PubMedGoogle Scholar
  5. 5.
    W. Stephan, T. H. E. Wiehe, and M. W. Lenz. (1992).Theor. Pop. Biol.41, 237–254.CrossRefGoogle Scholar
  6. 6.
    C. W. Birky Jr., and J. B. Walsh. (1988).Proc. Natl. Acad. Sci U.S.A.85, 6414–6418.PubMedCrossRefGoogle Scholar
  7. 7.
    R. R. Hudson. (1990).Oxf. Surv. Evol. Biol.7, 1–44.Google Scholar
  8. 8.
    M. Aguadè, N. Miyashita, and C. H. Langley. (1989).Genetics122, 607–615.PubMedGoogle Scholar
  9. 9.
    W. Stephan, and C. H. Langley. (1989).Genetics121, 89–99.PubMedGoogle Scholar
  10. 10.
    W. Stephan, and S. J. Mitchell. (1992).Genetics312, 1039–1045.Google Scholar
  11. 11.
    D. J. Begun, and C. F. Aquadro. (1991).Genetics129, 1147–1158.PubMedGoogle Scholar
  12. 12.
    A. J. Berry, J. W. Ajioka, and M. Kreitman. (1991).Genetics129, 1111–1117.Google Scholar
  13. 13.
    J. M. Martín-Campos, J. M. Comerón, N. Miyashita, and M. Aguadè. (1992).Google Scholar
  14. 14.
    C. H. Langley, J. MacDonald, N. Miyashita, and M. AguadAAA, M. (1993).Proc. Natl. Acad. Sci. USA90, 1800–1803.PubMedCrossRefGoogle Scholar
  15. 15.
    E. C. Kindahl, and C. F. Aquadro. (unpublished).Google Scholar
  16. 16.
    B. Charlesworth, M. T. Morgan, and D. Charlesworth. (1993).Genetics134, 1289–1303.PubMedGoogle Scholar
  17. 17.
    B. Charlesworth, J. A. Coyne, and N. H. Barton. (1987).Amer. Nat.130, 113–146.CrossRefGoogle Scholar
  18. 18.
    D. J. Begun, and C. F. Aquadro. (1993).Nature356, 548–550.CrossRefGoogle Scholar
  19. 19.
    C. F. Aquadro, and D. J. Begun. (1993). InMolecular Paleo-population Biology(N. Takahata, A. G. Clark, eds) Japan Sci. Soc. Press/Sinauer.Google Scholar
  20. 20.
    T.H.E. Wiehe, and W. Stephan. (1993).Molec. Biol. Evol.10, 842–854.PubMedGoogle Scholar
  21. 21.
    C. F. Aquadro. (1993).Trends Genet.8, 355–362.Google Scholar
  22. 22.
    J.H. Gillespie. (1991).The Causes of Molecular EvolutionOxford University Press.Google Scholar
  23. 23.
    J.H.McDonald, and M. Kreitman. (1991).Nature351, 652–654.PubMedCrossRefGoogle Scholar
  24. 24.
    W. F. Eanes, M. Kirchner, and J. Yoon. (1993).Proc. Natl. Acad. Sci. USA90, 7475–7479.PubMedCrossRefGoogle Scholar
  25. 25.
    R. M. Kliman, and J. Hey. (1993).Genetics133, 375–387.PubMedGoogle Scholar
  26. 26.
    J. Hey, and R. M. Kliman (1993).Molec. Biol. Evol.10, 804–822.PubMedGoogle Scholar
  27. 27.
    F. J. Ayala, and D. L. Hartl. (1993).Molec. Biol. Evol.10, 1030–1040.PubMedGoogle Scholar
  28. 28.
    T. Maruyama, and P. A. Fuerst. (1984).Genetics108, 745–763.PubMedGoogle Scholar
  29. 29.
    C. H. Langley. (1990). InPopulation Biology of Genes and Molecules(N. Takahata, J. F. Crow) Baifukan Co. Ltd., Tokyo.Google Scholar
  30. 30.
    F. Tajima. (1993). inMolecular Paleo-population Biology(N. Takahata, A. G. Clark, eds) Japan Sci. Soc. Press/Sinauer.Google Scholar
  31. 31.
    .M. Aguadè, M. Meyers, A. D. Long, C. H. Langley. (in press).Proc. Natl. Acad. Sci. USA. Google Scholar
  32. 32.
    J. R. David, and P. Capy. (1988).Trends Genet.4, 106–111.PubMedCrossRefGoogle Scholar
  33. 33.
    R. S. Singh, D. A. Hickey, and J. R. David. (1982).Genetics101, 235–256.PubMedGoogle Scholar
  34. 34.
    M. Choudhary, and R. S. Singh. (1987).Genetics117, 697–710.PubMedGoogle Scholar
  35. 35.
    R. S. Singh, and L. R. Rhomberg. (1987).Genetics117, 255–271.PubMedGoogle Scholar
  36. 36.
    J. Sved. (1977). InProceedings of the International on Quantitative GeneticsIowa State University Press.Google Scholar
  37. 37.
    R. M. Kliman, and J. Hey. (1993).Molec. Biol. Evol10, 1239–1258.PubMedGoogle Scholar
  38. 38.
    C. F. Aquadro, K. M. Lado, and W. A. Noon. (1988).Genetics119, 875–888.PubMedGoogle Scholar
  39. 39.
    E. C. Kindahl, and C. F. Aquadro. (unpublished).Google Scholar
  40. 40.
    R. R. Hudson. (1982).Genetics100, 711–719.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Charles F. Aquadro
  • David J. Begun
  • Eric C. Kindahl

There are no affiliations available

Personalised recommendations