Molecular Population Genetics in Drosophila Pseudoobscura: Three Future Directions

  • Stephen W. Schaeffer

Abstract

Nucleotide sequence data provides a powerful tool for population geneticists to discriminate between competing evolutionary hypotheses. The Adh region of Drosophila pseudoobscura has been a model system for the study of population genetic processes including mutation , random genetic drift, migration, recombination, and natural selection. Here, l summarize the relative importance of the major evolutionary forces acting on this relatively simple gene and suggest three future population studies that are motivated by the Adh data analysis.

Keywords

Synonymous Codon Nucleotide Sequence Data Random Genetic Drift Prefer Codon Neutral Expectation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Lewontin. (1974).The Genetic Basis of Evolutionary ChangeColumbia University Press.Google Scholar
  2. 2.
    M. Kreitman. (1987).Oxf. Surv. Evol. Biol.4, 38–60.Google Scholar
  3. 3.
    M. Kreitman. (1991). inEvolution at the Molecular Level(R. K. Selander, A. G. Clark, and T. S. Whittam) 204–221, Sinauer.Google Scholar
  4. 4.
    R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Ehrlich. (1988).Science239, 487–491.PubMedCrossRefGoogle Scholar
  5. 5.
    R. G. Higuchi, and H. Ochman. (1989).Nucleic. Acids Research17, 5865.PubMedCrossRefGoogle Scholar
  6. 6.
    F. Sanger, S. Nicken, and A. R. Coulson. (1977).Proc. Natl. Acad. Sci. USA74, 5463–5467.PubMedCrossRefGoogle Scholar
  7. 7.
    R. C. Lewontin. (1985).Ann. Rev. Genet.19, 81–102.PubMedCrossRefGoogle Scholar
  8. 8.
    A. Chovnick, W. Gelbart, and M. McCarron. (1977).Cell11, 1–10.PubMedCrossRefGoogle Scholar
  9. 9.
    C. F. Aquadro. (1992).Trends in Genet.8, 355–362.Google Scholar
  10. 10.
    C. F. Aquadro. (1993). InMolecular Approaches to Fundamental and Applied Entomology(Oakeshott, J. and Whitten, M.J.) 222–266, Springer-Verlag.CrossRefGoogle Scholar
  11. 11.
    M. Kimura. (1983).The Neutral Theory of Molecular EvolutionCambridge University Press.CrossRefGoogle Scholar
  12. 12.
    F. Tajima. (1989).Genetics123, 585–595.PubMedGoogle Scholar
  13. 13.
    R. R. Hudson, M. Kreitman, and M. Aguade. (1987).Genetics116, 153–159.PubMedGoogle Scholar
  14. 14.
    J. F. C. Kingman. (1982).J. Appl. Prob.19A, 27–43.CrossRefGoogle Scholar
  15. 15.
    J. F. C. Kingman. (1982).Stochast. Proc. Appl.13, 235–248.CrossRefGoogle Scholar
  16. 16.
    F. Tajima. (1983).Genetics105, 437–460.PubMedGoogle Scholar
  17. 17.
    R. R. Hudson. (1990).Oxf. Surv. Evol. Biol.7, 1–44.Google Scholar
  18. 18.
    M. Slatkin. (1991).Genet. Res.58, 167–175.PubMedCrossRefGoogle Scholar
  19. 19.
    S. Tavare. (1984).Theor. Pop. Biol.26, 119–164.CrossRefGoogle Scholar
  20. 20.
    R. R. Hudson, and N. L. Kaplan. (1988).Genetics120, 831–840.PubMedGoogle Scholar
  21. 21.
    N. L. Kaplan, T. Darden, and R. R. Hudson. (1988).Genetics120, 819–829.PubMedGoogle Scholar
  22. 22.
    S. W. Schaeffer, and E. L. Miller. (1992).Genetics132, 471–480.PubMedGoogle Scholar
  23. 23.
    S. W. Schaeffer, and E. L. Miller. (1993).Genetics135, 541–552.PubMedGoogle Scholar
  24. 24.
    S. W. Schaeffer, and E. L. Miller. (1992).Genetics132, 163–178.PubMedGoogle Scholar
  25. 25.
    S. W. Schaeffer, and E. L. Miller. (1991).Proc. Natl. Acad. Sci. USA88, 6097–6101PubMedCrossRefGoogle Scholar
  26. 26.
    S. W. Schaeffer, and C. F. Aquadro. (1987).Genetics117, 61–73.PubMedGoogle Scholar
  27. 27.
    G. K. Chambers, J. F. McDonald, M. McElfresh, and F. J. Ayala. (1978).Biochem. Genet.16, 757–767.PubMedCrossRefGoogle Scholar
  28. 28.
    S. Prakash. (1977).Evolution31, 14–23.CrossRefGoogle Scholar
  29. 29.
    D. J. Begun, and C. F. Aquadro. (1991).Genetics129, 1147–1158.PubMedGoogle Scholar
  30. 30.
    M. Aguade, N. Miyashita, and C. H. Langley. (1989).Genetics122, 607–615.PubMedGoogle Scholar
  31. 31.
    A. J. Berry, J. W. Ajioka, and M. Kreitman. (1991).Genetics129, 1111–1117.Google Scholar
  32. 32.
    M. Kreitman, and R. R. Hudson. (1991).Genetics127, 565–582.PubMedGoogle Scholar
  33. 33.
    N. Miyashita, and C. H. Langley. (1988).Genetics120, 199–212.PubMedGoogle Scholar
  34. 34.
    N. M. Miyashita, M. Aguade, and C. H. Langley. (1993).Genet. Res.62, 101–109.PubMedCrossRefGoogle Scholar
  35. 35.
    D.J. Begun, and C. F. Aquadro. (1992).Nature356, 519–520.PubMedCrossRefGoogle Scholar
  36. 36.
    W. Stephan, and D. A. Kirby. (1993).Genetics135, 97–103.PubMedGoogle Scholar
  37. 37.
    T. Ikemura. (1985).Mol. Biol. Evol.2, 13–34.PubMedGoogle Scholar
  38. 38.
    P. M. Sharp, and W.-H. Li. (1987).Mol. Biol. Evol.4, 222–230.PubMedGoogle Scholar
  39. 39.
    P. M. Sharp, and W.-H. Li. (1989).J. Mol. Evol.28, 398–402.PubMedCrossRefGoogle Scholar
  40. 40.
    D. C. Shields, P. M. Sharp, D. G. Higgins, and F. Wright. (1988).Mol. Biol. Evol.5, 704–716.PubMedGoogle Scholar
  41. 41.
    K. Wada, Y. Wada, F. Ishibashi, T. Gojobori, and T. Ikemura. (1992).Nucleic Acids Res.20, 2111–2118.PubMedCrossRefGoogle Scholar
  42. 42.
    S. W. Schaeffer, and H. Akashi. (1994).Naturein preparation.Google Scholar
  43. 43.
    R. M. Kliman, and J. Hey. (1993).Mol. Biol. Evol.10, 1239–1258.PubMedGoogle Scholar
  44. 44.
    R. R. Hudson, D. D. Boos, and N. L. Kaplan. (1992).Mol. Biol. Evol.9, 138–151PubMedGoogle Scholar
  45. 45.
    M. Nei. (1982). InHuman Genetics. Part A: The Unfolding Genome(B. BonneTamir, T. Cohen, and R. M. Goodman) 167–181, Alan R. Liss, Inc.Google Scholar
  46. 46.
    S. Wright. (1951).Annals of Eugenics15, 323–354.Google Scholar
  47. 47.
    S. Wright. (1931).Genetics16, 97–159.PubMedGoogle Scholar
  48. 48.
    J. A. Endler. (1973).Science179, 243–250.PubMedCrossRefGoogle Scholar
  49. 49.
    G. M. Simmons, M. E. Kreitman, W. F. Quattlebaum, and N. Miyashita. (1989).Evolution43, 393–409.CrossRefGoogle Scholar
  50. 50.
    A. Berry, and M. Kreitman. (1993).Genetics134, 869–893.Google Scholar
  51. 51.
    T. Dobzhansky, and M. L. Queal. (1938).Genetics23, 239–251.PubMedGoogle Scholar
  52. 52.
    T. Dobzhansky (1939).Genetics24, 391–412.PubMedGoogle Scholar
  53. 53.
    T. Dobzhansky. (1943).Genetics28, 162–186.PubMedGoogle Scholar
  54. 54.
    T. Dobzhansky. (1944).Carnegie Inst. Washington Publ.554, 47–144.Google Scholar
  55. 55.
    W. W. Anderson, J. Arnold, D. G. Baldwin, A. T. Beckenbach, C. J. Brown, S. H. Bryant, J. A. Coyne, L. G. Harshman, W. B. Heed, D. E. Jeffrey, L. B. Klaczko, B. C. Moore, J. M. Porter, J. R. Powell, T. Prout, S. W. Schaeffer, J. C. Stephens, C. E. Taylor, M. E. Turner, G. O. Williams, and J. A. Moore. (1991).Proc. Natl. Acad. Sci. USA88, 10367–10371.PubMedCrossRefGoogle Scholar
  56. 56.
    W. W. Anderson. (1989).Genome31, 239–245.PubMedCrossRefGoogle Scholar
  57. 57.
    J. R. Powell. (1992). InDrosophila Inversion Polymorphism(C.B. Krimbas, and J. R. Powell) 73–126, CRC Press.Google Scholar
  58. 58.
    T. Dobzhansky. (1970).Genetics of the Evolutionary ProcessColumbia University Press.Google Scholar
  59. 59.
    T. Dobzhansky. (1948).Genetics33, 588–602.Google Scholar
  60. 60.
    T. Dobzhansky, and O.A. Pavlovsky. (1953).Evolution7, 198–210.CrossRefGoogle Scholar
  61. 61.
    C. F. Aquadro, A. L. Weaver, S. W. Schaeffer, and W. W. Anderson. (1991).Proc. Natl. Acad. Sci. USA88, 305–309.PubMedCrossRefGoogle Scholar
  62. 62.
    M. Ashburner. (1989).Drosophila: A Laboratory HandbookCold Spring Harbor Laboratory Press.Google Scholar
  63. 63.
    M. Aguade, N. Miyashita, and C. H. Langley. (1989).Mol. Biol. Evol.6, 123–130.PubMedGoogle Scholar
  64. 64.
    W. G. Hill, and A. Robertson. (1968).Theor. Appl. Genet.38, 226–231.CrossRefGoogle Scholar
  65. 65.
    T. Ohta, and M. Kimura. (1969).Genetics63, 229–238.PubMedGoogle Scholar
  66. 66.
    G. B. Golding. (1984).Genetics108, 257–274.PubMedGoogle Scholar
  67. 67.
    R. R. Hudson. (1985).Genetics109, 611–631.PubMedGoogle Scholar
  68. 68.
    C. F. Aquadro, R. M. Jennings, M. M. Bland, C. C. Laurie, and C. H. Langley. (1992).Genetics132, 443–452.PubMedGoogle Scholar
  69. 69.
    C. F. Aquadro, S. F. Deese, M. M. Bland, C. H. Langley, and C. C. LaurieAhlberg. (1986).Genetics114, 1165–1190.PubMedGoogle Scholar
  70. 70.
    C. H. Langley, A. E. Shrimpton, T. Yamazaki, N. Miyashita, Y. Matsuo, and C. F. Aquadro. (1988).Genetics119, 619–629.PubMedGoogle Scholar
  71. 71.
    S. W. Schaeffer, C. F. Aquadro, and W. W. Anderson. (1987).Mol. Biol. Evol.4, 254–265.PubMedGoogle Scholar
  72. 72.
    S. W. Schaeffer, C. F. Aquadro, and C. H. Langley. (1988).Mol. Biol. Evol.5, 30–40.PubMedGoogle Scholar
  73. 73.
    A. H. D. Brown, M. W. Feldman, E. and Nevo. (1980).Genetics96, 523–536.PubMedGoogle Scholar
  74. 74.
    A. H. D. Brown, and M. W. Feldman. (1981).Proc. Nail. Acad. Sci. USA78, 5913–5916.CrossRefGoogle Scholar
  75. 75.
    T. Dobzhansky. (1955).Cold Spring Harbor Symp. Quant. Biol.20, 1–15.PubMedCrossRefGoogle Scholar
  76. 76.
    E. Nevo. (1978).Theor. Pop. Biol.13, 121–177.CrossRefGoogle Scholar
  77. 77.
    A. L. Hughes, and A. Nei. (1988).Nature335, 167–170.PubMedCrossRefGoogle Scholar
  78. 78.
    B. S. Baker. (1989).Nature340, 521–524.PubMedCrossRefGoogle Scholar
  79. 79.
    T. W. Cline. (1985). InThe Origin and Evolution of Sex(H. O. Halvorson, and A. Munroy) 301–327, Alan R. Liss, Inc.Google Scholar
  80. 80.
    M. Steinmann-Zwicky. (1988).EMBO J.7, 3889–3898.Google Scholar
  81. 81.
    S. M. Parkhurst, and D. Ish-Horowicz. (1992).Current Biology2, 629–631.PubMedCrossRefGoogle Scholar
  82. 82.
    L. N. Keyes, T. W. Cline, and P. Schedl. (1992).Cell68, 933–943.PubMedCrossRefGoogle Scholar
  83. 83.
    J. R. Powell, A. Caccone, J. M. Gleason, and L. Nigro. (1993).Genetics133, 291–298.PubMedGoogle Scholar
  84. 84.
    M. T. O’Neil, and J. M. Belote. (1992).Genetics131, 113–128.PubMedGoogle Scholar
  85. 85.
    C. Mune, P. S. McCaw, and D. Baltimore. (1989).Cell56, 777–783.CrossRefGoogle Scholar
  86. 86.
    C. Mune, P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S.D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. (1989).Cell58, 537–544.CrossRefGoogle Scholar
  87. 87.
    M. Torres, and L. Sanchez. (1989).EMBO J.8, 3079–3086.PubMedGoogle Scholar
  88. 88.
    S. M. Parkhurst, D. Bopp, and D. Ish-Horowicz. (1990).Cell63, 1179–1191.PubMedCrossRefGoogle Scholar
  89. 89.
    K. C. Burtis, K. T. Coschigano, B. S. Baker, and P. C. Wensink. (1991).EMBO J.10, 2577–2582.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Stephen W. Schaeffer

There are no affiliations available

Personalised recommendations