Advertisement

Phylogenetic Analysis on the Edge: The Application of Cladistic Techniques at the Population Level

  • Robert DeSalle
  • Alfried P. Vogler

Abstract

The potential of cladistic techniques in examining phylogeny at or below the population level is examined. Four methodologies for the reconstruction of relationships between populations (qualitative Hennigian analysisgene frequencies in a maximum parsimony framework population aggregation analysis and individuals as terminals) are summarized and their theoretical backgrounds explained. Each technique is placed into the context of Hennigian phylogenetic systematics and used to examine population level patterns in two groups of insects (Hawaiian Drosophila and Cicindela dorsalis). The “line of death” at the boundary of tokogeny and phylogeny is assessed in light of these techniques and the suggestion that phylogenetic analysis is not possible below this line is discussed.

Keywords

Character State Cladistic Analysis Phylogenetic Species Phylogenetic Systematic Gene Genealogy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    .J. C. Avise, J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb, and N. C. Saunders. (1987). Intraspecific phylogeography: The mitochondrial bridge between population genetics and systematics.Annual Review of Ecology and Systematics18, 489–522.Google Scholar
  2. 2.
    D. A. Baum, and K. L. Shaw. (1994). Genealogical perspective on the species problem. Experimental and Molecular Approaches to Plant Biosystematics. ed. by P.0 Hoach, A.G. Stevenson and B.A. Schaal. St. Louis Monographs in Systematics, Missouri Botanical Garden (in press).Google Scholar
  3. 3.
    R. L. Cann, M. Stoneking, and A. C. Wilson. (1987). Mitochondrial DNA and human evolution.Nature325, 31–36.PubMedCrossRefGoogle Scholar
  4. 4.
    J. M. Carpenter, J. E. Strassmann, S. Turillazzi, C. R. Hughes, C. R. Solis, and R. Cervo. (1993). Phylogenetic relationships among paper wasp social parasites and their hosts (Hymenoptera: Vespidae; Polistinae).Cladistics9, 129–146.CrossRefGoogle Scholar
  5. 5.
    H. L. Carson. (1982). Evolution of Drosophila on the newer Hawaiian volcanoes.Heredity48, 3–25.PubMedCrossRefGoogle Scholar
  6. 6.
    H. L. Carson. (1987). Chromosomal evolution of Hawaiian Drosophila.Trends in Ecology and Evolution2, 200–206.CrossRefGoogle Scholar
  7. 7.
    H. L. Carson. (1990). Evolutionary process as studied in population genetics: clues from phylogeny. pp. 129–156 in Oxford Surveys in Evolutionary Biology, Volume 7 ed. by J. Antonovics and D. Futuyma. Oxford University Press, New York.Google Scholar
  8. 8.
    J. Cracraft. (1983). Species concept and speciation analysis.Current Ornithology 1159–187.CrossRefGoogle Scholar
  9. 9.
    K. A. Crandall, and A. R. Templeton. (1993). Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction.Genetics134, 959–969.PubMedGoogle Scholar
  10. 10.
    B. I. Crother. (1990). Is “some better than none” or do allele frequencies contain phylogenetically useful information?Cladistics6, 277–281.CrossRefGoogle Scholar
  11. 11.
    J. I. Davis, and K. C. Nixon. (1992). Populations, genetic variation, and the delimitation of phylogenetic species.Systematic Biology41, 421–435.Google Scholar
  12. 12.
    K. de Queiroz, and M. J. Donoghue. (1990). Phylogenetic systematics and the phylogenetic species concept.Cladistics4, 317–338.CrossRefGoogle Scholar
  13. 13.
    R. DeSalle, and L. V. Giddings. (1986). Discordance of nuclear and mitochondrial DNA phylogenies in HawaiianDrosophila. Proceedings of the National Academy of Science83, 6902–6906.CrossRefGoogle Scholar
  14. 14.
    R. DeSalle, L. V. Giddings, and K. Y. Kaneshiro. (1986). Mitochondrial DNA variability in natural populations of HawaiianDrosophila.II. Genetic and phylogenetic relationships of natural populations ofD. silvestrisandD. heteroneura. Heredity56, 87–96.Google Scholar
  15. 15.
    R. DeSalle, and A.R. Templeton. (1988). Founder effects and the rate of mitochondrial DNA evolution in the Hawaiian Drosophila.Evolution42, 1076–1084.CrossRefGoogle Scholar
  16. 16.
    R. DeSalle, and A. R. Templeton. (1992). The mtDNA genealogy of closely relatedDrosophila silvestris. Journal of Heredity83, 211–216.Google Scholar
  17. 17.
    W. J. Ewens. (1990). Population genetics theory-the past and the future, pp 177–227 inMathematical and Statistical Developments of Evolutionary Theoryedited by S. Lessard. Kluward Academic Publishers, New York.Google Scholar
  18. 18.
    J. S. Farris. (1983). The logical basis of phylogenetic inference. In: (N. I. Platnick and V. A. Funk, ed.)Advances in Cladistics.Volume 2. Columbia University Press, New York.Google Scholar
  19. 19.
    W. Hennig. (1966). Phylogenetic Systematics. University of Illinois Press, Urbana.Google Scholar
  20. 20.
    R. R. Hudson. (1990). Gene genealogies and the coalescent process.Oxford Survey in Evolutionary Biology7, 1–44.Google Scholar
  21. 21.
    J. F. C. Kingman. (1982a). The coalescent.Stochast. Proc. Appl.13, 235–248.CrossRefGoogle Scholar
  22. 22.
    J. F. C. Kingman. (1982b). On the genealogy of large populations.J. Appl. prob.19A, 27–43.CrossRefGoogle Scholar
  23. 23.
    A. G. Kluge. (1989). Metacladistics.Cladistics5, 291–294.CrossRefGoogle Scholar
  24. 24.
    W. P. Maddison, and D. R. Maddison (1992) MacClade version 3.01. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  25. 25.
    M. Mickevich. (1982). Transformation series analysis.Systematic Zoology31, 461–478.CrossRefGoogle Scholar
  26. 26.
    M. F. Mickevich, and M. S. Johnson. (1976). Congruence between morphological and allozyme data in evolutionary inference and character evolution.Systematic Zoology25, 260–270.CrossRefGoogle Scholar
  27. 27.
    M. Nei. (1987). Molecular evolutionary genetics. Columbia University Press, New York.Google Scholar
  28. 28.
    G. Nelson. (1989). Cladistics and evolutionary models.Cladistics5, 275–289.CrossRefGoogle Scholar
  29. 29.
    G. J. Nelson, and N. I. Platnick. (1981). Systematics and biogeography: Cladistics and vicariance. Columbia University Press, New York.Google Scholar
  30. 30.
    K. C. Nixon, and J. I. Davis. (1991). Polymorphic taxa, missing values and cladistic analysis.Cladistics7, 233–241.CrossRefGoogle Scholar
  31. 31.
    K. C. Nixon, and Q. D. Wheeler. (1990). An amplification of the phylogenetic species concept.Cladistics6, 212–223.CrossRefGoogle Scholar
  32. 32.
    J. C. Patton, and J. C. Avise. (1983). An empirical evaluation of qualitative Hennigian analyses of protein electrophoretic data.Journal of Molecular Evolution19, 244–254.PubMedCrossRefGoogle Scholar
  33. 33.
    J. C. Patton, R. J. Baker, and J. C. Avise. (1981). Phenetic and cladistic analyses of biochemical evolution in peromyscine rodents. In: (M. H. Smith and J. Joule, ed.)Mammalian population genetics.University of Georgia Press, Athens.Google Scholar
  34. 34.
    D. L. Swofford, Phylogenetic Analysis Using Parsimony (PAUP); program and documentation. Natural History Survey, University of Illinois, Champaign, Illinois.Google Scholar
  35. 35.
    D. L. Swofford, and S. H. Berlocher. (1987). Inferring evolutionary trees from gene frequency data under the principle of maximum parsimony.Systematic Zoology36, 293–325.CrossRefGoogle Scholar
  36. 36.
    A. R. Templeton, E. Boerwinkle, and C. F. Sing. (1987). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and sequencing data I Basic theory and an analysis of alcohol dehydrogenase activity inDrosophila. Genetics117, 343–351.Google Scholar
  37. 37.
    A. R. Templeton, K. A. Crandall, and C. F. Sing. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and sequencing data. III. Cladogram estimation.Genetics132, 619–633.PubMedGoogle Scholar
  38. 38.
    A. P. Vogler, and R. DeSalle. (1993a). Mitochondrial DNA evolution and the application of the phylogenetic species concept in theCicindela dorsaliscomplex (Coleoptera: Cicindelidae). In: (K. Desender, ed.)Carabid beetles: ecology and evolution.Kluwer Academic Press, Dordrecht, The Netherlands.Google Scholar
  39. 39.
    A. P. Vogler, and R. DeSalle. (1993b). Phylogeographic patterns in coastal North American Tiger BeetlesCicindela dorsalisinferred from mitochondrial DNA sequences.Evolution47, 1192–1202.CrossRefGoogle Scholar
  40. 40.
    A. P. Vogler, R. DeSalle, T. Assmann, C. B. Knisley, and T. D. Schultz. (1993). Molecular population genetics of the endangered tiger beetleCicindela dorsalis(Coleoptera: Cicindelidae).Annals of the Entomological Society of America86, 142–152.Google Scholar
  41. 41.
    P. Vrana, and W. C. Wheeler (1992) Individual organisms as terminal entities: Laying the species problem to rest.Cladistics8, 67–72.CrossRefGoogle Scholar
  42. 42.
    A. C. Wilson, R. L. Cann, S. M. Carr, M. George, U. B. Gyllenstein, K. M. HelmBychowski, R. G. Higuchi, S. R. Palumbi, E. M. Prager, R. D. Sage, and M. Stoneking (1985) Mitochondrial DNA and two perspectives on evolutionary genetics.Biological Journal of the Linnaean Society26, 375–400.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Robert DeSalle
  • Alfried P. Vogler

There are no affiliations available

Personalised recommendations