Skip to main content

Precision High-Frequency Continuous-Time Integrator Circuits in BiCMOS

  • Chapter
Integrated Video-Frequency Continuous-Time Filters

Abstract

In Chapters 2 through 4, we have considered the broad technological and theoretical aspects of high-performance integrated continuous-time filter design. The theoretical limitations of wave filters and architectural considerations in their design were examined in Chapters 2 and 3 and the modified leapfrog filter topology was demonstrated to be apropos for fixed filter applications. There, it was seen that the summing-integrator subcircuit comprised the core of such an implementation. The operational amplifier-RC integrators illustrating the filter topologies in Chapter 3, however, are unsuitable for video frequency IC filters. In this chapter, we consider the implementation of precision integrators in BiCMOS technology. The success of an IC filter design hinges on such circuit design issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. B. Benson and D. G. Fink, HDTV: Advanced Television for the 1990s. New York: Multiscience Press, 1991.

    Google Scholar 

  2. Y. P. Tsividis and J. O. Voorman, eds., Integrated Continuous-Time Filters: Principles, Design, and Applications. Piscataway, New Jersey: IEEE Press, 1993.

    Google Scholar 

  3. M. Banu and Y. P. Tsividis, “An elliptic continuous-time filter with on-chip automatic tuning,” IEEE J. Solid-State Circuits, vol. SC-20, pp. 1114–1121, Dec. 1985.

    Article  Google Scholar 

  4. Y. P. Tsividis, M. Banu, and J. Khoury, “Continuous-time MOSFET-C filters in VLSI,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 15–30, Feb. 1986.

    Article  Google Scholar 

  5. J. M. Khoury and Y. P. Tsividis, “Analysis and compensation of high-frequency effects in integrated MOSFET-C continuous-time filters,” IEEE Trans. Circuits Syst., vol. CAS-34, pp. 862–875, Aug. 1987.

    Article  Google Scholar 

  6. A. Ganesan, 1989. Pizza-Hut placemat.

    Google Scholar 

  7. K. Fukahori, “A bipolar voltage-controlled tunable filter,” IEEE J. Solid-State Circuits, vol. SC-16, pp. 729–737, Dec. 1981.

    Article  Google Scholar 

  8. J. O. Voorman, W. H. A. Bruls, and P. J. Barth, “Integration of analog filters in a bipolar process,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 713–722, Aug. 1982.

    Article  Google Scholar 

  9. B. Gilbert, “Translinear circuits: A proposed classification,” Electron. Lett.,vol. 11, pp. 14–16,1975.

    Article  Google Scholar 

  10. B. Gilbert, “Current-mode circuits from a translinear viewpoint: A tutorial,” in Analogue IC Design: The Current-Mode Approach (C. Toumazou, F. J. Lidgey, and D. G. Haigh, eds.), ch. 2, pp. 11–92, London: Peter Peregrinus, 1990.

    Google Scholar 

  11. B. Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. SC-3, pp. 365–373, Dec. 1968.

    Article  Google Scholar 

  12. P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits. New York: Wiley, 2nd ed., 1984.

    Google Scholar 

  13. P. Antognetti and G. Massobrio, eds., Semiconductor Device Modeling with SPICE. New York: McGraw-Hill, 1988.

    Google Scholar 

  14. Y. P. Tsividis and K. Suyama, “MOSFET modeling for analog circuit CAD: Problems and prospects,” IEEE J. Solid-State Circuits, vol. 29, pp. 210–216, Mar. 1994.

    Article  Google Scholar 

  15. Y. P. Tsividis, Operation and Modeling of the MOS Transistor. New York: McGraw-Hill, 1987.

    Google Scholar 

  16. J. Silva-Martinez, M. S. J. Steyaert, and W. Sansen, `A 10.7-MHz 68-dB SNR CMOS continuous-time filter with on-chip automatic tuning,“ IEEE J. Solid-State Circuits, vol. 27, pp. 1843–1853, Dec. 1992.

    Article  Google Scholar 

  17. J. M. Khoury, “Design of a 15-MHz CMOS continuous-time filter with on-chip tuning,” IEEE J. Solid-State Circuits, vol. 26, pp. 1988–1997, Dec. 1991.

    Article  Google Scholar 

  18. F. Krummenacher and N. Joehl, “A 4 MHz CMOS continuous-time filter with on-chip automatic tuning,” IEEE J. Solid-State Circuits, vol. 23, pp. 750–758, June 1988.

    Article  Google Scholar 

  19. C. S. Park and R. Schaumann, “Design of a 4-MHz analog integrated CMOS transconductance-C bandpass filter,” IEEE J. Solid-State Circuits, vol. 23, pp. 987–996, Aug. 1988.

    Article  Google Scholar 

  20. J. Silva-Martinez, M. S. J. Steyaert, and W. M. C. Sansen, “A large-signal very low-distortion transconductor for high-frequency continuous-time filters,” IEEE J. Solid-State Circuits, vol. 26, pp. 946–955, July 1991.

    Article  Google Scholar 

  21. B. Nauta, “A CMOS transconductance-C filter technique for very high frequencies,” IEEE J. Solid-State Circuits, vol. 27, pp. 142–153, Feb. 1992.

    Article  Google Scholar 

  22. A. Nedungadi and T. R. Viswanathan, “Design of linear transconductance elements,” IEEE Trans. Circuits Syst., vol. CAS-31, pp. 891–894, Oct. 1984.

    Article  Google Scholar 

  23. R. R. Torrance, T. R. Viswanathan, and J. V. Hanson, “CMOS voltage to current transducers,” IEEE Trans. Circuits Syst., vol. CAS-32, pp. 1097–1104, Nov. 1985.

    Article  Google Scholar 

  24. Y. P. Tsividis, Z. Czarnul, and S. C. Fang, “MOS transconductors and integrators with high linearity,” Electron. Lett., vol. 22, pp. 245–246, 1986.

    Article  Google Scholar 

  25. T. L. Viswanathan, “CMOS transconductance element,” Proceedings of the IEEE, vol. 74, pp. 222–224, Jan. 1986.

    Article  Google Scholar 

  26. K. Bult and H. Wallinga, “A class of analog CMOS circuits based on the square law characteristic of an MOS transistor in saturation,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 357–365, June 1987.

    Article  Google Scholar 

  27. S. T. Dupuie and M. Ismail, “High frequency CMOS transconductors,” in Analogue IC Design: The Current-Mode Approach (C. Toumazou, F. J. Lidgey, and D. G. Haigh, eds.), ch. 5, pp. 181–238, London: Peter Peregrinus, 1990.

    Google Scholar 

  28. O. H. Schade, Jr., “A new generation of MOS/bipolar operational amplifiers,” RCA Review,vol. 37, pp. 401 424, Sept. 1976.

    Google Scholar 

  29. B. Gilbert, “A new wide-band amplifier technique,” IEEE J. Solid-State Circuits, vol. SC-3, pp. 353–365, Dec. 1968.

    Article  Google Scholar 

  30. W. M. C. Sansen and R. G. Meyer, “An integrated wide-band variable-gain amplifier with maximum dynamic range,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 159–166, Aug. 1974.

    Article  Google Scholar 

  31. B. Gilbert, “Bipolar current mirrors,” in Analogue IC Design: The Current-Mode Approach (C. Toumazou, E. J. Lidgey, and D. G. Haigh, eds.), ch. 6, pp. 239–296, London: Peter Peregrinus, 1990.

    Google Scholar 

  32. R. D. Jolly and R. H. McCharles, “A low-noise amplifier for switched capacitor filters,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 1192–1194, Dec. 1982.

    Article  Google Scholar 

  33. B. K. Ahuja, “An improved frequency compensation technique for CMOS operational amplifiers,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 629–633, Dec. 1983.

    Article  MathSciNet  Google Scholar 

  34. C. A. Makris and C. Toumazou, “High frequency, precision integrators using current-conveyor compensation techniques,” in IEEE ISCAS Proc., pp. 291–294, 1990.

    Google Scholar 

  35. C. A. Makris and C. Toumazou, “Improved operational amplifier settling behavior using active compensation techniques,” in IEEE ISCAS Proc., pp. 617–620,1990.

    Google Scholar 

  36. J. M. Steininger, “Understanding wide-band MOS transistors,” IEEE Circuits and Devices, pp. 26–31, May 1990.

    Google Scholar 

  37. A. P. Brokaw, 1991. private communication.

    Google Scholar 

  38. P. Real and D. H. Robertson, “Cascode current mirror,” Jan. 1991. U.S. patent 4,983,929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willingham, S.D., Martin, K. (1995). Precision High-Frequency Continuous-Time Integrator Circuits in BiCMOS. In: Integrated Video-Frequency Continuous-Time Filters. The Springer International Series in Engineering and Computer Science, vol 323. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2347-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2347-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5995-1

  • Online ISBN: 978-1-4615-2347-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics