Adsorption of Metal Ions from Aqueous Solutions: Model Development

  • Sotira Yiacoumi
  • Chi Tien
Chapter

Abstract

The development of a comprehensive description of metal ion adsorption from aqueous solutions at equilibrium and non-equilibrium conditions, based on the principles of surface complexation models, is presented. This presentation begins with the various surface complexation models, previously developed to describe adsorption equilibrium, and then further develops the models for the prediction of adsorption rates.

Keywords

Zinc Clay Porosity Nickel Hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashida, M., M. Sasaki, K. Hachiya, and T. Yasunaga, Kinetics of adsorption-desorption of OH on TiO2-H2O interface by means of pressure-jump technique, J. Colloid Interface Sci., 74, 572–573, 1980.CrossRefGoogle Scholar
  2. Ashida, M., M. Sasaki, H. Kan, T. Yasunaga, K. Hachiya, and T. Inoue, Kinetics of proton adsorption-desorption at TiO2-H2O interface by means of pressure-jump technique, J. Colloid Interface Sci., 67, 219–225, 1978.CrossRefGoogle Scholar
  3. Benjamin, M. M. and J. O. Leckie, Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron hydroxide, Colloid Interface Sci., 79, 209–221, 1981a.CrossRefGoogle Scholar
  4. Benjamin, M. M. and J. O. Leckie, Competitive adsorption of Cd, Cu, Zn, and Pb on amorphous ion hydroxide, J. Colloid Interface Sci., 83, 410–419, 1981b.CrossRefGoogle Scholar
  5. Biegler, L. T., Improved infeasible path optimization for sequential modular simulators. I. The interface, Comput. Chem. Engng., 9, 245–256, 1985.CrossRefGoogle Scholar
  6. Biegler, L. T. and J. E. Cuthrell, Improved infeasible path optimization for sequential modular simulators. II. The optimization algorithm, Comput. Chem. Engng., 9, 257–267, 1985.CrossRefGoogle Scholar
  7. Blesa, M. A. and N. Kallay, The metal oxide-electrolyte solution interface revisited, Advan. Colloid Interface Sci., 28, 111–134, 1988.CrossRefGoogle Scholar
  8. Bold, G. H. and W. H.Van Riemsdijk, Ion adsorption on inorganic variable charge constituents, Chapter 13, Soil Chemistry B. Physico-chemical Models, G. H. Bolt, ed., Elsevier, Amsterdam, 1982.Google Scholar
  9. Corapsioglu, M. O., The removal of heavy metals by activated carbon process from water and wastewater, Copper(II), Lead(II), Nickel(II) and Zinc(II), Ph.D. Dissertation, University of Delaware, Newark, DE, 1984.Google Scholar
  10. Corapsioglu, M. O. and C. P. Huang, The adsorption of heavy metals onto hydrous activated carbon, Wat. Res., 21, 1031–1044, 1987.CrossRefGoogle Scholar
  11. Davis, J. A., R. O. James, and J. O. Leckie, Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes, J. Colloid Interface Sci., 63, 480–499, 1978.CrossRefGoogle Scholar
  12. Davis, J. A. and J. O. Leckie, Surface ionization and complexation at the oxide/water interface. 2. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions, J. Colloid Interface Sci., 67, 90–107, 1978.CrossRefGoogle Scholar
  13. Davis, J. A. and J. O. Leckie, Surface ionization and complexation at the oxide/water interface. 3. Adsorption of ions, J. Colloid Interface Sci., 74, 32–43, 1980.CrossRefGoogle Scholar
  14. Dzombak, D. A. and F. M. M. Morel, Sorption of cadmium on hydrous ferric oxide at high sorbate/sorbent ratios: equilibrium, kinetics, and modeling, J. Colloid Interface Sci., 112, 588–598, 1986.CrossRefGoogle Scholar
  15. Dzombak, D. A. and F. M. M. Morel, Surface Complexation Modeling-Hydrous Ferric Oxide, John Wiley & Sons, New York, 1990.Google Scholar
  16. Glueckauf, F. and J. I. Coates, Theory of chromatography. IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation, J. Chem. Soc., 41, 1315–1318, 1947.CrossRefGoogle Scholar
  17. Hachiya, K., M. Sasaki, Y. Saruta, N. Mikami, and T. Yasunaga, Static and kinetic studies of adsorption-desorption of metal ions on a γ-Al2O3 surface. 1. Static study of adsorption-desorption, J. Phys. Chem., 88, 23–27, 1984a.CrossRefGoogle Scholar
  18. Hachiya, K., M. Sasaki, T. Ikeda, N. Mikami, and T. Yasunaga, Static and kinetic studies of adsorption-desorption of metal ions on a γ-Al2O3surface. 1. Kinetic study by means of pressure-jump technique, J. Phys. Chem., 88, 27–31, 1984b.CrossRefGoogle Scholar
  19. Hayes, K. F. and J. O. Leckie, Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces, J. Colloid Interface Sci., 115,564–572, 1987.CrossRefGoogle Scholar
  20. Healy, T. W. and L. R. White, Ionizable surface group models of aqueous interfaces, Advan. Colloid Interface Sci., 304–345, 1978.Google Scholar
  21. Helfferich, F. G., Ion exchange kinetics-evolution of a theory, Mass Transfer and Kinetics of Ion Exchange, L. Liberti and F. G. Helfferich, eds., Martinus Nijhoff, Boston, 1983.Google Scholar
  22. Hohl, H and W. Stumm, Interaction of Pb2+ with hydrous γ-Al2O3, J. Colloid Interface Sci., 55, 281–2288, 1976.CrossRefGoogle Scholar
  23. Huang, C. P. and F. B. Ostovic, Removal of Cd(II) by activated carbon adsorption, J. Environmental Engineering, 104, 863–878, 1978.Google Scholar
  24. James, R. O. and G. A. Parks, Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties, Surface and Colloid Science, Volume 12, E. Matijevic, ed., 119–216, Wiley-Interscience, New York, 1982.CrossRefGoogle Scholar
  25. Newman, J. S., Electrochemical Systems, Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar
  26. Park, S. W. and C. P. Huang, The adsorption characteristics of some heavy metal ions onto hydrous CdS(s) surface, Colloid Interface Sci., 128, 245–257, 1989.CrossRefGoogle Scholar
  27. Schindler, P. W, B. Furst, B. Dick, and P. U. Wolt, Ligand properties of surface silanol groups. I. Surface complex formation with Fe2+, Cu2+, Cd2+, and Pb2+, J. Colloid Interface Sci., 55, 469–475, 1976.CrossRefGoogle Scholar
  28. Stumm, W., H. Hohl, and F. Dalang, Interaction of metal ions with hydrous oxide surfaces, F. Croat. Chem. Acta, 48, 491–504, 1976.Google Scholar
  29. Stumm, W., C. P. Huang, and S. R. Jenkins, Specific chemical interactions affecting the stability of dispersed systems, Croat. Chem. Acta, 42, 223–244, 1970.Google Scholar
  30. Tamura, H., E. Matijevic, and L. Meites, Adsorption of Co2+ ions on spherical magnetite particles, J. Colloid Interface Sci., 93,303–314, 1983.CrossRefGoogle Scholar
  31. Tien, C., Adsorption Calculations and Modeling, Butterworth-Heinemann, Newton, MA, 1994.Google Scholar
  32. Van Riemsdijk, W. H., G. H. Bolt, L. K. Koopal, and J. Blaakmeer, Electrolyte adsorption on heterogeneous surfaces: adsorption models, J. Colloid Interface Sci., 109, 219–228, 1986.CrossRefGoogle Scholar
  33. Van Riemsdijk, W. H., J. C. M. De Wit, L. K. Koopal, and G. H. Bolt, Metal ion adsorption on heterogeneous surfaces: adsorption models, J. Colloid Interface Sci., 116, 511–522,1987.CrossRefGoogle Scholar
  34. Yao, C., A study of a few problems in adsorption, Ph.D. Dissertation, Syracuse University, Syracuse, NY, 1991.Google Scholar
  35. Yao, C. and C. Tien, Approximations of uptake rate of spherical adsorbent pellets and their application to batch adsorption calculations, Chem. Eng. Sci., 48, 187–198, 1993.CrossRefGoogle Scholar
  36. Yates, D. E., S. Levine, and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, Chem. Soc. Faraday Trans. I, 70, 1807–1818, 1974.CrossRefGoogle Scholar
  37. Zhang. P. and D. L. Sparks, Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface, Environ. Sci. Technol., 24, 1847–1856, 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Sotira Yiacoumi
    • 1
  • Chi Tien
    • 2
  1. 1.Georgia Institute of TechnologyUSA
  2. 2.Syracuse UniversityUSA

Personalised recommendations