Skip to main content

Comparison Between Electric, Magnetic, and Optical Sensors

  • Chapter
  • 152 Accesses

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 332))

Abstract

In this chapter we present a comparative study of different sensing means that are used with comparable sensing shells to detect small displacement/force and accelerations. We consider the cantilever beam shown in Figure 1 as the sensor shell commonly used by all the sensors discussed in the present chapter. It is a simple silicon cantilever beam that is fabricated as discussed in section II. The sensing mean translates the displacement of the cantilever beam to a signal. The sensor shell we have described is used in a variety of sensors including atomic force and scanning tunneling microscopes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Tabib-Azar and J. S. Leane, “Direct Optical Control for a Silicon Micro-Actuator.” Sensors and Actuators, Vol. A (21), p.p. 229–235 (1989).

    Google Scholar 

  2. M. Tabib-Azar, “Sensor Parameters and Characterization.” In: VCH Handbook series, Volume I; Fundamentals. Edited by W. H. Ko and T. Grandke, p.p. 18–42 (1990).

    Google Scholar 

  3. R. V. Jones and J. C. S. Richards, “The design and some applications of sensitive capacitive micrometers.” J. of Phys. E, Vol. 6, p.p. 589–600 (1973).

    Google Scholar 

  4. G. Neubauer, S. R. Cohen, Gary M McClelland, Don Horne and C Mathew Mate, “Force microscopy with a bidirectonal capacitance sensor.” Rev. Sc. Instrum., Vol. 61 (9), p.p. 2296–2307 (1990).

    Article  Google Scholar 

  5. H-L. Chau and K. D. Wise, “Scaling limits in batch-fabricated silicon pressure sensors.” IEEE Trans. Electr. Dev., Vol. ED-34 (4), p.p. 850–858 (1987).

    Article  Google Scholar 

  6. R. R. Spencer, B. M. Fleischer, Phillip W Barth, James B Angell, “A theoretical study of transducer noise in piezoresistive and capacitive silicon pressure sensors.” IEEE Trans. electr. dev., Vol. 35 (8), p.p. 1289–1297 (1988).

    Article  Google Scholar 

  7. H-L Chau and K. D. Wise, “Noise due to brownian motion in ultrasensitive solid state sensors.” IEEE Trans. electr. dey., Vol. ED-34 (4), p.p. 859–865 (1987).

    Article  Google Scholar 

  8. W. H. Ko, “Solid-state capacitive pressure transducers.” Sensors and Actuators, Vol. 10 (3 and 4), p.p. 303–320 (1986).

    Article  Google Scholar 

  9. a) T. Itoh and T. Suga, “Piezoelectric sensor for detecting force gradients in atomic force microscopy.” Jpn. J. Appl. Phys. Vol. 33. p.p. 334–340 (1994).

    Article  Google Scholar 

  10. b) G. Yi, Z. Wu, and M. Sayer, “Preparation of Pb(Zr,Ti)03 thin films by sol gel processing: lectrical, optical, and electro-optic properties.” J. Appl. Phys., Vol. 64 (5), p.p. 2717–2724 (1988).

    Article  Google Scholar 

  11. C. J. Chen, Introduction to Scanning Tunneling Microscopy,Oxford University Press, New York, p.p. 213–235 (1993).

    Google Scholar 

  12. W. P. Robbins, D. Polla, and D. E. Glumac, “ High-Displacement Piezoelectric Actuator Utilizing a Meander-Line Geometry - Part I: Experimental Characterization.” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38 (5), (1991).

    Google Scholar 

  13. D. Sarid, Scanning Force Microscopy, Oxford University Press, New York, p.p. 55–64 (1991).

    Google Scholar 

  14. M. F. Bocko, K. A. Stephenson, and R. H. Koch, “Vacuum Tunneling Probe: A Nonreciprocal, Reduced-Back-Action Transducer.” Phys. Rev. Lett., Vol. 61 (6), p.p. 726–729 (1988).

    Article  Google Scholar 

  15. K. Stephenson, M. F. Bocko, and R. H. Koch, “Reduced-Noise Nonreciprocal Transducer Based Upon Vaccum Tunneling.” Phys. Rev. A, Vol. 40 (11), p.p. 6615–6625 (1989).

    Article  Google Scholar 

  16. M. F. Bocko, “The Scanning Tunneling Microscope as a High-Gain, Low-Noise Displacement Sensor.” Rev. Sci. Instrum., Vol. 61 (12), p.p. 3763–3768 (1990).

    Article  Google Scholar 

  17. M. Tabib-Azar, N. Shoemaker, and S. Harris, “Superresolution Characterization of Microwave Conductivity of Semiconductors.” IOP Meas. Science Technology, Vol. 4, p.p. 583–590 (1993).

    Article  Google Scholar 

  18. E. A. Ash, and G. Nicholls, Nature, Vol. 237, p. 510 (1972).

    Article  Google Scholar 

  19. H. H. Woodson, J. R. Melcher, Electromechanical Dynamics Part I: Discrete Systems, John Wiley and Sons, Inc. New York, p.p. 20–28 (1968).

    Google Scholar 

  20. J. Seekircher, B. Hoffmann, and E. Miehlich, “Robust Magnetoelastic Force Sensor Using Amorphous Metal Alloys with Low Magnetic Interference.” Sensors and Actuators A. 25–27, p.p. 25–27 (1991).

    Google Scholar 

  21. Ch. S. Roumenin, `Bipolar Magnetotransistor Sensors. An Invited Review.“ Sensors and Actuators A, Vol. 24, pp. 83–105 (1990).

    Article  Google Scholar 

  22. D. Sarid, Scanning Force Microscopy, Oxford University Press, New York, p.p. 158–159 (1991).

    Google Scholar 

  23. A. Chovet, Ch. S. Roumenin, G. Dimopoulos, and N. Mathieu, “Comparison of Noise Properties of Different Magnetic-field Semiconductor Integrated Sensors.” Sensors and Actuators, A21- A23, p.p. 790–794 (1990)

    Google Scholar 

  24. T. Van Duzer, and C. W. Turner, Principles of Superconductive Devices and Circuits, Elsevier, North Holland, p.p. 216–226 (1981).

    Google Scholar 

  25. L. M. Falicov, “Surface, Interface and Thin-Film Magnetizm: An Overview.” Mat. Res. Soc. Symp. Proc. Vol. 231, p.p. 3–13 (1992).

    Article  Google Scholar 

  26. M. Tabib-Azar and D. Polla (Editors), Integrated Optics and Microstructures. Proceeding of OE/Fiber SPIE Confrerence Pub. # 1793 (1993).

    Google Scholar 

  27. C. A. Putman, et al., “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy.” J. Appl. Phys. Vol. 72 (1), p.p. 6–12 (1992).

    Article  Google Scholar 

  28. J. Wilson, and J. F. B. Hawkes, Optoelectronics; An Introduction, second edition, Prentice Hall Int. Ltd, UK, p.p. 239–241 (1989).

    Google Scholar 

  29. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V Elings, and P. K. Hansma, “An atomic-resolution atomic-force microscope implemented using an optical lever.” J. Appl. Phys., Vol. 65 (1), p.p. 164–167 (1989).

    Article  Google Scholar 

  30. K. W. Huen, A Novel Integrated Optical Device on Micromachined Silicon, M.S. Thesis, Case Western Reserve Univ., August (1991).

    Google Scholar 

  31. K. E. Burcham, G. N. De Brabander, and J. T. Boyd, “Micromachined Silicon Cantilever Beam Accelerometer Incorporating an Integrated Optical Waveguide.” In: Integrated Optics and Microstructures. M. Tabib-Azar and D. Polla (Editors), Proceeding of OE/Fiber SPIE Confrerence (Pub. # 1793), p.p. 12–18 (1993).

    Chapter  Google Scholar 

  32. S. Wu and H. J. Frankena, “Integrated Optical Sensors Using Micromechanical Bridges and Cantilevers.” In: Integrated Optics and Microstructures. M. Tabib-Azar and D. Polla (Editors), Proceeding of OE/Fiber SPIE Confrerence (Pub. # 1793), p.p. 83–89 (1993).

    Chapter  Google Scholar 

  33. D. Marcuse, Theory of Dielectric Optical Waveguides, Second Edition, Academic Press, Inc., San Diego, CA (1991).

    Google Scholar 

  34. H. Kogelnik, “Theory of Optical Waveguides.” In: Guided-Wave Optoelectronics, edited by T. Tamir, Springer Verlag, Berlin, pp. 7–87 (1990).

    Chapter  Google Scholar 

  35. A. Yariv, Quantum electronics, 3rd ed. Wiley and sons, New York (1964).

    Google Scholar 

  36. U. Durig, D. W. Pohl, and F. Rohner, J. Appl. Phys. 59, p.p. 3318 (1986).

    Article  Google Scholar 

  37. R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, and T. L. Ferrell, “Photon Scanning Tunneling Microscopy.” Rev. Sci. Instrum. Vol. 61 (12), p.p. 3669–3677 (1990).

    Article  Google Scholar 

  38. D. W. Pohl, W. Denk, and M. Lanz, “Optical Stethoscopy: Image Recording with Resolution x,/20.” Appl. Phys. Lett. Vol. 44 (7), p. 651 (1984)

    Article  Google Scholar 

  39. P. J. Moyer, C. L. Jahncke, M. A. Paesler, R. C. Reddick, and R. J. Warmack, “Spectroscopy in the Evanescent Field with an Analytical Photon Scanning Tunneling Microscope.” Physics Letters A, Vol. 145 (6,7), p.p. 343–347 (1990).

    Article  Google Scholar 

  40. W. Lukosz and P. Pliska, “Integrated Optical Interferometer as a Ligth Modulator and Microphone.” Sensors and Actuators A, Vol. 25–25, p.p. 25–25 (1991).

    Article  Google Scholar 

  41. W. C. Borland, D. E. Zelmon, C. J. Radens, Jo. T. Boyd, and H. E. Jackson, “Properties of Four-Layers Planar Optical Waveguides Near Cutoff.” IEEE J. Quant. Electr., Vol. QE-23 (7), p.p.1172–1179 (1987).

    Article  Google Scholar 

  42. A. Garcia, Studies on high-sensitivity force and displacement optical sensors, M.S. Thesis, Case Western Reserve Univ., August (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garcia-Valenzuela, A., Tabib-Azar, M. (1995). Comparison Between Electric, Magnetic, and Optical Sensors. In: Integrated Optics, Microstructures, and Sensors. The Springer International Series in Engineering and Computer Science, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2273-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2273-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9621-5

  • Online ISBN: 978-1-4615-2273-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics