Advertisement

Integrated and Fiber Optics Sensors “Basic Concepts and Devices”

  • Margaret Tuma
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 332)

Abstract

This chapter discusses fiber optic and integrated optic sensor concepts. Unfortunately, there is no standard method to categorize these sensor concepts. Here, fiber optic and integrated optic sensor concepts will be categorized by the primary modulation technique. These modulation techniques have been classified as [1–4]:
  1. 1

    Intensity modulation

     
  2. 2

    Phase modulation

     
  3. 3

    Wavelength modulation

     
  4. 4

    Polarization modulation

     
  5. 5

    Time/frequency modulation

     

Keywords

Cantilever Beam Ring Resonator Fiber Optic Sensor Michelson Interferometer Interferometric Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.A. Krohn, Fiber Optic Sensors Fundamentals and Applications, Instrument Society of America, North Carolina, 1988.Google Scholar
  2. 2.
    C.M. Davis et. al., Fiber Optic Sensor Technology Handbook, Dynamic Systems, Reston, Virginia, 1982.Google Scholar
  3. 3.
    B. Culshaw, “Optical Systems and Sensors for Measurement and Control.” J. Phys. E: Sci. Instrum., Vol. 16, pp. 978–986, 1983.CrossRefGoogle Scholar
  4. 4.
    S. Medlock, “Review of Modulating Techniques for Fibre Optic Sensors.” J. Opt. Sensors, Vol. 1, No. 1, pp. 43–68, 1986.Google Scholar
  5. 5.
    J.P. Dakin, “Multiplexed and Distributed Optical Fibre Sensor Systems.” J. Phys. E: Sci. Instrum., Vol. 20, pp. 954–965, 1987.CrossRefGoogle Scholar
  6. 6.
    B. Culshaw and J. Dakin, ed., Optical Fiber Sensors: Systems and Applications, Vol. II, Artech House, Inc., MA, 1989.Google Scholar
  7. 7.
    W.B. Spillman Jr., D.H. McMahon,“Frustrated-Total-InternalReflection Multimode Fiber Optic Hydrophone.” Appl. Opt., Vol. 19, pp. 113–117, 1980.Google Scholar
  8. 8.
    T.G. Giallorenzi et. al. “Optical Fiber Sensor Technology.” IEEE. J. Quant. Electron., Vol. QE-18, No. 4, 1982.Google Scholar
  9. 9.
    D.H. McMahon, A.R. Nelson, and W.B. Spillman Jr., “Fiber Optic Transducers.” IEEE Spectrum,. Vol 24 pp 29, 1981.Google Scholar
  10. 10.
    G.D. Pitt, “Optical-Fibre Sensors.” IEE Proceedings, Vol. 132, Pt. J., No. 4, pp. 214–248, 1985.Google Scholar
  11. 11.
    J.W. Berthold III, “Historical Review of Microbend Fiber Optic Sensors.” in Proc. 10th Optical Fibre Sensors Conference, pp. 182185, 1994.Google Scholar
  12. 12.
    C.D. Kissenger, and B. Howland, “Fiber Optic Displacement Measuring Apparatus.” U.S. Patent 3,940,608, Feb. 24, 1976.Google Scholar
  13. 13.
    A.K. Bejczy, H.C. Primus, and W.A. Herman, “Fiber Optic Proximity Sensor.” NASA Tech Briefs, Vol. 4, No.3, Item 63, JPL Report NPO-14653/ 30–4279, March 1980.Google Scholar
  14. 14.
    W.V. Sorin, “High Resolution Optical Fiber Reflectometry Techniques.” in Distributed and Multiplexed Fiber Optic Sensors II, Proc. SPIE, Vol. 1797, pp. 109–118, 1992.CrossRefGoogle Scholar
  15. 15.
    K.E. Burcham, G.N. De Brabander, and J.T. Boyd, “Micromachined Silicon Cantilever Beam Accelerometer Incorporating an Integrated Optical Waveguide.” Integrated Optics and Microstructures, Proc. SPIE, Vol. 1793, pp. 12–18, 1992.CrossRefGoogle Scholar
  16. 16.
    H. Bezzaoui and E. Voges, “Integrated Optics Combined with Micromechanics on Silicon.” Sensors and Actuators A, Vol. 29, pp. 219–223, 1991.CrossRefGoogle Scholar
  17. 17.
    D. Uttamchandani, D. Liang, and B. Culshaw. “A Micromachined Silicon Accelerometer with Fibre Optic Interrogation.” Integrated Optics and Microstructures, Proc. SPIE, Vol. 1793, pp. 27–33, 1992.CrossRefGoogle Scholar
  18. 18.
    S. Wu and H.J. Frankena, “Integrated Optical Sensors using Micromechanical Bridges and Cantilevers.” Integrated Optics and Microstructures, Proc. SPIE, Vol. 1793, pp. 83–89, 1992.CrossRefGoogle Scholar
  19. 19.
    Y.N. Ning, K.T.V. Grattan, W.M. Wang and A.W. Palmer, “A Systematic Classification and Identification of Optical Fibre Sensors.” Sensors and Actuators A, Vol. 29, pp. 21–36, 1991.CrossRefGoogle Scholar
  20. 20.
    M. Corke, A.D. Kersey, D.A. Jackson, and J.D.C. Jones, “All fibre Michelson Thermometer.” Electron. Lett., Vol. 19, pp. 471–473,1983.Google Scholar
  21. 21.
    M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford, 1970.Google Scholar
  22. 22.
    C.M. Davis, E.F. Carome, M.H. Weik, S. Ezekiel, R.E. Einzig, Fiberoptic Sensor Technology Handbook, Optical Technologies, Inc., Herndon, Virginia, 1986.Google Scholar
  23. 23.
    G. Trommer, E. Hartl, and R. Muller, “Progress in Passive Fiber Optic Gyroscope Development.” Proc. 10th Optical Fibre Sensors Conference, pp. 438–444, 1994.Google Scholar
  24. 24.
    R.T. Kersten, “Integrated Optical Sensors.” Proceedings of the NATO Advanced Study Institute on Optical Fiber Sensors, Kluwer Academic Publishers, Massachusetts, pp. 243–266, 1987.Google Scholar
  25. 25.
    J. Blake, P. Tantaswadi and R.T. de Carvalho, “In-Line Sagnac Interferometer for Magnetic Field Sensing.” Proc. 10th Optical Fibre Sensors Conference, pp. 419–422, 1994.Google Scholar
  26. 26.
    R.T. de Carvalho and J. Blake, “Simultaneous Measurement of Electric and Magnetic Fields using a Sagnac Interferometer.” Proc. 10th Optical Fibre Sensors Conference, pp. 411–414, 1994.Google Scholar
  27. 27.
    J.P. Kurmer, S.A. Kingsley, J.S. Laudo, and S.J. Krak, “Applicability of a Novel Distributed Fiber Optic Acoustic Sensor for Leak Detection.” Distributed and Multiplexed Fiber Optic Sensors II, Proc. SPIE, Vol. 1797, pp. 63–71, 1992.CrossRefGoogle Scholar
  28. 28.
    J. Breguet, J.P. Pellaux, and N. Gisin, “Photoacoustical Detection of Trace Gases with an Optical Microphone.” Proc. 10th Optical Fibre Sensors Conference, pp. 457–460, 1994.Google Scholar
  29. 29.
    A. Enokihara, M. Izutsu, and T. Sueta, “Integrated-Optic Fluid Sensor Using Heat Transfer.” Appl. Opt., Vol. 27, No.1, pp. 109–113, 1988.CrossRefGoogle Scholar
  30. 30.
    J.C. Greenwood, “Silicon in Mechanical Sensors.” J. Phys. E: Sci. Instrum, Vol. 21, pp. 1114–1128, 1988.CrossRefGoogle Scholar
  31. 31.
    K.E. Petersen, “Silicon as a Mechanical Material.” Proc. IEEE, Vol. 70, pp. 420–455, 1982.CrossRefGoogle Scholar
  32. 32.
    M. Ohkawa, M. Izutsu, and T. Sueta, “Integrated Optic Pressure Sensor on Silicon Substrate.” Appl. Opt., Vol. 28, No. 23, pp. 5153–5157, 1989.CrossRefGoogle Scholar
  33. 33.
    K. Fischer, J. Muller, R. Hoffmann, F. Wasse, and D. Salle, “Elastooptical Properties of SiON Layers in an Integrated Optical Interferometer Used as a Pressure Sensor.” J. Lightwave Tech., Vol. 12, No. 1, pp. 163–169, 1994.CrossRefGoogle Scholar
  34. 34.
    A. Vadekar, A. Nathan, and W.P. Huang, “Analysis and Design of an Integrated Silicon ARROW Mach-Zehnder Micromechanical Interferometer.” J. Lightwave Tech., Vol. 12, No. 1, pp. 157–162, 1994.CrossRefGoogle Scholar
  35. 35.
    C. Wagner, “Optical Pressure Sensor Based on a Mach-Zehnder Interferometer Integrated with a Lateral a-Si:H p-i-n Photodiode.” IEEE Photon. Tech. Lett., Vol. 5, No. 10, pp. 1257–1259, 1993.CrossRefGoogle Scholar
  36. 36.
    A. Nathan, Y. Bhatnagar, A. Vadekar, and W. Huang, “Fabrication of a Silicon Mach-Zehnder Interferometer for Mechanical Measurands.” Integrated Optics ad Microstructures, Proc. SPIE, Vol. 1793, pp. 19–26, 1992.CrossRefGoogle Scholar
  37. 37.
    D. Peters, K. Fischer and J. Muller, “Integrated Optics Based on Silicon Oxynitride Thin Films Deposited on Silicon Substrates for Sensor Applications.” Sensors and Actuators A, 2527, pp. 425–431, 1991.CrossRefGoogle Scholar
  38. 38.
    A. Bearzotti, C. Caliendo, E. Verona, and A. D’Amico, “Integrated Optic Sensor for the Detection of H2 Concentrations.” Sensors and Actuators B, Vol. 7, pp. 685–688, 1992.CrossRefGoogle Scholar
  39. 39.
    L.M. Johnson, F.J. Leonberger, and G.W. Pratt, “Integrated Optical Temperature Sensor.” Appl. Phys. Lett., Vol. 41, No. 2, pp. 134–136, 1982.CrossRefGoogle Scholar
  40. 40.
    J. Wilson and J.F.B. Hawkes, Optoelectronics: An Introduction, 2nd edition, Prentice Hall Int. Ltd., UK, pp. 239–241, 1989.Google Scholar
  41. 41.
    H. Wolfelschneider et. al., “Optically Excited and Interrogated Micromechanical Silicon Cantilever Structure.” Fiber Optic Sensors II, Proc. SPIE, Vol. 798, pp. 61–66, 1987.CrossRefGoogle Scholar
  42. 42.
    S. Valette, S. Renard, J.P. Jadot, P. Gidon, and C. Erbeia, “Silicon-Based Integrated Optics Technology for Optical Sensor Applications.” Sensors and Actuators, A21–A23, pp. 1087–1091, 1990.CrossRefGoogle Scholar
  43. 43.
    M. Izutsu, A. Enokihara, and T. Sueta, “Optical-Waveguide Micro-Displacement Sensor.” Electron. Lett., Vol. 18, No. 20, pp. 867–868, 1982.Google Scholar
  44. 44.
    M. Izutsu, A. Enokihara, and T. Sueta, “Integrated Optic Temperature and Humidity Sensors.” J. Lightwave Tech., Vol. LT-4, No. 67, pp. 833–836, 1986.CrossRefGoogle Scholar
  45. 45.
    M. Izutsu, A. Enokihara, N. Mekada, and T. Sueta, “OpticalWaveguide Pressure Sensor.” European Conference on Integrated Optics, Firenze, pp. 144–146, 1983.Google Scholar
  46. 46.
    R. Ulrich, “Theory of Spectral Encoding for Fiber-Optic Sensors.” Proceedings of the NATO Advanced Study Institute on Optical Fiber Sensors, Kluwer Academic Publishers, Massachusetts, pp. 73–130, 1987.Google Scholar
  47. 47.
    G. Beheim, J.L. Sotomayor, M.L. Tuma, and M. Tabib-Azar, “Fiber-Optic Temperature Sensor Using Laser Annealed Silicon Film.” Integrated Optics and Microstructures II, Proc. SPIE, Vol. 2291, pp. 92–98, 1994.CrossRefGoogle Scholar
  48. 48.
    J.C. Hartle, E.W. Saaski, and G.L. Mitchell, “Fiber Optic Temperature Sensor using Spectral Modulation.” Fiber Optic and Laser Sensors V, Proc. SPIE, Vol. 838, pp. 257–261, 1987.CrossRefGoogle Scholar
  49. 49.
    B. Halg, “A Silicon Pressure Sensor with Low Cost Contactless Interferometer Optical Readout” Sensors and Actuators A, Vol. 30, pp. 225–230, 1992.216–226, 1992.Google Scholar
  50. 50.
    A. Mendez, T.F. Morse, and K.A. Ramsey, “Micromachined Fabry-Perot Interferometer with Corrugated Silicon Diaphragm for Fiber Optic Sensing Applications.” Integrated Optics and Microstructures, Proc. SPIE, Vol. 1793, pp. 170–182, 1992.CrossRefGoogle Scholar
  51. 51.
    K. Fritsch and G. Beheim, “Wavelength-Division Multiplexed Digital Optical Position Transducer.” Opt Lett., Vol. 11, pp. 1–3, 1986.CrossRefGoogle Scholar
  52. 52.
    G.N. De Brabander, J.T. Boyd, G. Beheim, “Integrated Optical Ring Resonator With Micromechanical Diaphragm for Pressure Sensing.” IEEE Photon. Tech. Lett., Vol. 6, No. 5, pp. 671–673, 1994.CrossRefGoogle Scholar
  53. 53.
    G.N. De Brabander, J.T. Boyd, G. Beheim, “Integrated Optical Interferometer with Micromechanical Diaphragm for Pressure Sensing.” Integrated Optics and Microstructures II, Proc. SPIE, Vol. 2291, pp. 144–148, 1994.CrossRefGoogle Scholar
  54. 54.
    T. Bosselmann, P. Menke, “Intrinsic Temperature Compensation of Magnetooptic AC Current Transformers with Glass Ring Sensor Head.” Proc, 10th Optical Fibre Sensors Conference, pp. 20–23, 1994.Google Scholar
  55. 55.
    K. Kurosawa et. al., “Polarization Maintaining Properties of the Flint Glass Fiber for the Faraday Sensor Element.” Proc. 10th Optical Fibre Sensors Conference, pp. 28–32, 1994.Google Scholar
  56. 56.
    K.B. Rochford, A.H. Rose, M.N. Deeter, and G.W. Day, “Faraday Effect Current Sensor With Improved Sensitivity-Bandwidth Product.” Proc. 10th Optical Fibre Sensors Conference, pp. 32–35, 1994.Google Scholar
  57. 57.
    W. Lukosz, “Integrated Optical Nanomechanical Devices as Modulators, Switches and Tunable Filters, and as Acoustical Sensors.” Integrated Optics and Microstructures, Proc. SPIE, Vol. 1793, pp. 214–234, 1992.CrossRefGoogle Scholar
  58. 58.
    S. Fujita, T. Kihara, M. Aoki, A. Hiroe, and K. Yokomori, “Integrated Waveguide Device for Magneto-Optical Disk Signal Detection and Its\ Fabrication Techniques.” Miniature and Micro-Optics and Micromechanics, Proc. SPIE, Vol. 1992, pp. 140–149, 1993CrossRefGoogle Scholar
  59. 59.
    M.J. Tudor, M.V. Andres, K.W.H. Foulds, and J.M. Naden, “Silicon Resonator Sensors: Interrogation Techniques and Characteristics.” IEE Proc., Vol. 135, Pt. D, No. 5, pp. 364–368, 1988.Google Scholar
  60. 60.
    S.D. Tilstra, “A Flourescence-Based Fiber Optic Temperature Sensor For Aerospace Applications.” Specialty Fiber Optic Systems for Mobile Platforms, Proc. SPIE, Vol. 1589, pp. 32–37, 1991.CrossRefGoogle Scholar
  61. 61.
    V. Fernicola and L. Crovini, “A High Temperature Digital Fiber-Optic Thermometer.” Proc. 10th Optical Fibre Sensors Conference, pp. 211–214, 1994.Google Scholar
  62. 62.
    G. O’Keeffe et. al. “Development of an Intrinsic Phase Fluorimetric Oxygen Sensor Using a High Intensity Blue LED.” Proc. 10th ptical Fibre Sensors Conference, pp. 461–464, 1994.Google Scholar
  63. 63.
    A.J. Rogers, “Distributed Optical-Fibre Sensors.” Proceedings of the NATO Advanced Study Institute on Optical Fiber Sensors, Kluwer Academic Publishers, pp. 143–163, 1987.Google Scholar
  64. 64.
    T.S.J. Lammerink, S.J. Gerritsen, “Fiber-Optic Sensors Based on Resonating Structures.” Fiber Optic Sensors II, Proc. SPIE, Vol. 798, pp. 67–71, 1987.CrossRefGoogle Scholar
  65. 65.
    T. Nakayama, “Fiber LDA System.” Proceedings of the NATO Advanced Study Institute on Optical Fiber Sensors, Kluwer Academic Publishers, pp. 217–226, 1987.Google Scholar
  66. 66.
    H. Toda, M. Haruna, and H. Nishihara, “Optical Integrated Circuit for a Fiber Laser Doppler Velocimeter.” J. Lightwave Tech., Vol. 5, No. 7, pp. 901–905, 1987.CrossRefGoogle Scholar
  67. 67.
    B. Culshaw, “Silicon in Optics.” Fiber Optic Sensors II, Proc. SPIE, Vol. 798, pp. 346–353, 1987.CrossRefGoogle Scholar
  68. 68.
    H. Uzeitig and H. Bartelt, “All-Optical Pressure Sensor with Temperature Compensation on Resonant PECVD Silicon Nitride Microstructures.” Electron. Lett., Vol. 28, No. 4, pp. 40–402, 1992.Google Scholar
  69. 69.
    Y.J. Rao and B. Culshaw, “Comparison Between Optically Excited Vibrations of Silicon Cantilever and Bridge Microresonators.” Sensors and Actuators A, Vol. 30, pp. 203–208, 1992.CrossRefGoogle Scholar
  70. 70.
    M.V. Andres, M.J. Tudor, and K.W.H. Foulds, “Analysis of an Interferometric Optical Fiber Detecting Technique Applied to Silicon Vibration Sensors.” ELectron. Lett., Vol. 23, pp. 774–775, 1987.Google Scholar
  71. 71.
    R.E. Jones, J.M. Naden, R.C. Neat, “Optical-Fibre Sensors using Micromachined Silicon Resonant Elements.” IEE Proc., Vol. 135, Pt. D, No. 5, pp. 353–358, 1988.Google Scholar
  72. 72.
    D. Angelidis and P. Parsons, “Optical Micromachined Pressure Sensor for Aerospace Applications.” Opt. Eng., Vol. 31, No. 8, pp.1638–1641, 1992.Google Scholar
  73. 73.
    K.E. Petersen, and C.R. Guarnieri, “Young’s Modulus Measurements of Thin Film using Micromechanics.” J. Appl. Phys., Vol. 50, pp. 6761–6766, 1979.CrossRefGoogle Scholar
  74. 74.
    Y. Uenishi, H. Tanaka, and H. Ukita, “AlGaAs/GaAs Micromachining for Monolithic Integration of Optical and Mechanical Components.” Integrated Optics and Microstructures II, Proc. SPIE, Vol. 2291, pp. 82–91, 1994.CrossRefGoogle Scholar
  75. 75.
    Y.J. Rao and B. Culshaw, “Continuously Stable Selfoscillation of Silicon Cantilever Microresonators.” Electron. Lett., Vol. 27, No. 19, pp. 1697–1699, 1991.Google Scholar
  76. 76.
    S.C. Jensen, S.D. Tilstra, G.A.Barnabo, D.C. Thomas, and R.W. Philips, “A Fiber Optic Temperature Sensor for Aerospace Applications.” Fiber Optic Systems for Mobile Platforms, Proc.SPIE, Vol. 1369, pp. 87–93, 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Margaret Tuma
    • 1
  1. 1.National Aeronautics and Space Administration, Lewis Research CenterEngine Sensor Technology BranchClevelandUSA

Personalised recommendations