Advertisement

Dynamics of Free Carriers in Diamond

  • S. Han
  • L. S. Pan
  • D. R. Kania
Chapter
Part of the The Kluwer International Series in Engineering and Computer Science book series (EMST)

Abstract

In equilibrium every diamond contains a finite number of free charge arriers, either from intentional doping or unintentional defects. It is the number and motion of the free carriers that determines its electrical conductivity. In the first half of this chapter we discuss the motion of these charge carriers to applied forces; i.e. the electrical transport properties of diamond. In the second half we treat the generation of non-equilibrium carriers and their return to equilibrium, through recombination and rapping following the application of external sources of excitation.

Keywords

Diamond Film Carrier Lifetime Hole Mobility Natural Diamond Polycrystalline Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Vandersande, and L. D. Zoltan, “High temperature electrical conductivity measurments of natural diamond and diamond films”, Surf, and Coatings Techn. 47, 392 (1991).CrossRefGoogle Scholar
  2. 2.
    See, e.g., C. M. Wolfe, N. Holonyak, Jr, and G. E. Stillman, Physical Properties of Semiconductors, Prentice Hall, Ch. 5 (1989).Google Scholar
  3. 3.
    J. Bardeen and W. Shockley, “Deformation potentials and mobilities in nonpolar crystals,” Phys. Rev. 80, 72 (1950).CrossRefGoogle Scholar
  4. 4.
    R. A. Smith, p. 248.Google Scholar
  5. 5.
    A. G. Redfield, “Electronic hall effect in diamond”, Phys. Rev. 94 (3), 526 (1954).CrossRefGoogle Scholar
  6. 6.
    I. G. Austin and R. Wolfe, “Electrical and optical properties of a semiconducting diamond”, Proc. Phys. Soc. B69, 329 (1956).Google Scholar
  7. 7.
    P. J. Dean, E. C. Lightowlers, and D. R. Wight, “Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond”, Phys. Rev. 140 (1A), A352 (1965).CrossRefGoogle Scholar
  8. 8.
    E. A. Konorova and S. A. Shevchenko, “Investigation of the carrier mobility in diamond”, Sov. Phys. -Semicond. 1 (3), 299 (1967).Google Scholar
  9. 9.
    F. Nava, C. Canali, M. Artuso, E. Gatti, and P. F. Manfredi, “Transport properties of natural diamond used as nuclear particle detector for a wide temperature range”, IEEE Trans. on Nucl. Sci. NS-26 (1), 308 (1979).CrossRefGoogle Scholar
  10. 10.
    L. S. Pan, D. R. Kania, P. Pianetta, J. W. Ager III, M. I. Landstrass, S. Han, and O. L. Landen, “Temperature dependent mobility in single-crystal and chemical-vapor-deposited diamond”, J. Appl. Phys. 73 (6), 2888 (1993).CrossRefGoogle Scholar
  11. 11.
    C. C. Klick and R. J. Maurer, “The mobility of electrons in diamond”, Phys. Rev. 81 (1), 124 (1951).CrossRefGoogle Scholar
  12. 12.
    A. G. Redfield, “Electronic hall effect in diamond”, Phys. Rev. 94 (3), 526 (1954).CrossRefGoogle Scholar
  13. 13.
    E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors”, Phys. Rev. 77, 388 (1950).CrossRefGoogle Scholar
  14. 14.
    H. Brooks, “Scattering by ionized impurities in semiconductors ”, Phys. Rev. 83, 879 (1951).Google Scholar
  15. 15.
    P. I. Baranskii, V. G. Malogolovets, V. I. Torishnii, and G.V. Chipenko, “Temperature dependence of the mobility of holes in synthetic semiconducting diamonds”, Sov. Phys. Semicond. 21 (1), 45 (1987).Google Scholar
  16. 16.
    N. Fujimori, H. Nakahata, and T. Imai, “Properties of boron-doped epitaxial diamond films”, Jpn. J. Appl. Phys. 29, 824 (1990).CrossRefGoogle Scholar
  17. 17.
    L. S. Pan, D. R. Kania, P. Pianetta, and O. L. Landen, “Carrier density dependent photoconductivity in diamond”, Appl. Phys. Lett. 57 (6), 623 (1990).CrossRefGoogle Scholar
  18. 18.
    A. T. Collins and E. C. Lightowlers: The Properties of Diamond, ed. J.E. Field (Academic Press, London, 1979), Ch. 3, p 86.Google Scholar
  19. 19.
    P. T. Wedepohl, “Electrical and optical properties of type IIb diamond”, Proc. Phys. Soc. B70, 177 (1957).Google Scholar
  20. 20.
    N. Fujimori, H. Nakahata, and T. Imai, “Properties of boron-doped epitaxial diamond films”, Jpn. J. Appl. Phys. 29 (5), 824 (1990).CrossRefGoogle Scholar
  21. 21.
    C. Erginsoy, “Neutral impurity scattering in semiconductors”, Phys. Rev. 79, 1013 (1950).CrossRefGoogle Scholar
  22. 22.
    T. C. McGill and R. Baron, “Neutral impurity scattering in semiconductors”, Phys. Rev. 11, 5208 (1975).CrossRefGoogle Scholar
  23. 23.
    L. S. Pan, unpublished.Google Scholar
  24. 24.
    D. L. Dexter and F. Seitz, “Effects of dislocations on mobilities in semiconductors”, Phys. Rev. 86 (6), 964 (1952).CrossRefGoogle Scholar
  25. 25.
    W. T. Read, Jr., “Scattering of electrons by charged dislocations in semiconductors”, Philos. Mag. 46, 111 (1955).Google Scholar
  26. 26.
    See, for example, K. Seeger, Semiconductor Physics. Springer-Verlag (Berlin), Ch. 8 (1989).CrossRefGoogle Scholar
  27. 27.
    P. E. Clegg and E. W. J. Mitchell, “The density of states mass of holes in semiconducting diamond”, Proc. Phys. Soc. 84, 31 (1964).CrossRefGoogle Scholar
  28. 28.
    C. J. Rauch, in Proc. Int. Conf. on Phys. of Semiconductors. Exeter, ed. A. C. Strickland, The Institute of Physics and the Physical Society, London, 276 (1962).Google Scholar
  29. 29.
    A. W. S. Williams, Ph.D. Thesis, Univ. of Lond. (1970), data taken from A. T. Collins and E. C. Lightowlers, “Ch. 3. Electrical Properties”, The Properties of Diamond, ed. J. E. Field, Academic Press (London), 1979.Google Scholar
  30. 30.
    L. Reggiani, S. Bosi, C. Canali, F. Nava, and S. F. Kozlov, “On the lattice scattering and effeective mass of holes in natural diamond”, Sol. State Comm. 30, 333 (1979).CrossRefGoogle Scholar
  31. 31.
    F. Nava, C. Canali, C. Jacoboni, L. Reggiani, and S. F. Kozlov, “Electron effective masses and lattice scattering in natural diamond”, Solid State Comm. 33, 475 (1980).CrossRefGoogle Scholar
  32. 32.
    J. L. Moil, Physics of Semiconductors. (Wiley, New York), Chapter 10.Google Scholar
  33. 33.
    G. Davies, “Cathodoluminescence”, The Properties of Diamond, ed. J. E. Field, Academic Press, 1979, p. 171.Google Scholar
  34. 34.
    S. M. Sze, Physics of Semiconductor Devices. John Wiley & Sons, 1985, Appendix H.Google Scholar
  35. 35.
    L. S. Pan, S. Han, D. R. Kania, S. Zhao, K. K. Gan, H. Kagan, R. Kass, R. Malchow, F. Morrow, W. F. Palmer, S. K. Kim, F. Sannes, S. Schnetzer, R. Stone, G. B. Thomson, Y. Sugimoto, A. Fry, S. Kanda, S. Olsen, M. Franklin, J. W. Ager III, and P Pianetta, “Particle and photoinduced conductivity in type IIa diamonds”, J. Appl. Phys. 74 (2), 1086 (1993).CrossRefGoogle Scholar
  36. 36.
    D. K. Ferry, “High-field transport in wide-bandgap semiconductors”, Phys. Rev. B 12 (6), 2361 (1975).CrossRefGoogle Scholar
  37. 37.
    M. A. Osman, M. Imam, and N. Nintunze, “Diffusion coefficient of electrons in diamond”, in Applications of Diamond Films and Related Materials. Y. Tzeng, M. Yoshikawa, M. Murakawa, and A. Feldman (editors), Elsevier Science Publishers B.V., 611 (1991).Google Scholar
  38. 38.
    F. Nava, C. Canali, M. Artuso, E. Gatti, and P. F. Manfredi, “Transport properties of natural diamond used as nuclear particle detector for a wide temperature range”, IEEE Trans. Nucl. Sci. NS-26 (1), 308 (1979).CrossRefGoogle Scholar
  39. 39.
    C. A. Klein and R. DeSalvo, “Thresholds for dielectric breakdown in laser-irradiated diamond”, Appl. Phys. Lett. 63 (14), 1895 (1993).CrossRefGoogle Scholar
  40. 40.
    P. Liu, R. Yen, and N. Bloembergen, “Dielectric breakdown threshold, two-photon absorption, and other optical damage mechanisms in diamond”, IEEE J. Quan. Electron, QE-14 (8), 574 (1978).CrossRefGoogle Scholar
  41. 41.
    E. A. Konorova, Y. A. Kuznetsov, V. F. Sergienko, S. D. Tkachenko, A. V. Tsikunov, A. V. Spitsyn, and Y. Z. Danyushevskii, “Impact ionization in semiconductor structures made of ion-implanted diamond”, Sov. Phys. Semicond. 17 (2), 146 (1983).Google Scholar
  42. 42.
    P. Das and D. K. Ferry, “Hot electron microwave conductivity of wide bandgap semiconductors”, Solid-State Electronics 19, 851 (1976).CrossRefGoogle Scholar
  43. 43.
    C. J. Rauch, “Millimeter cyclotron resonance experiments in diamond”, Phys. Rev. Lett. 7 (3), 83 (1961).CrossRefGoogle Scholar
  44. 44.
    B. Massarani, J. C. Bourgoin, and R. M. Chrenko, “Hopping conduction in semiconducting diamond”, Phys. Rev. B 17 (4), 1758 (1978)..CrossRefGoogle Scholar
  45. 45.
    E. P. Visser, G. J. Bauhuis, G. Janssen, W. Vollenberg, W. J. P. van Enckevort, and L. J. Giling, “Electrical conduction in homoepitaxial, boron-doped diamond films”, J. Phys.: Condens. Matter 4, 7365 (1992).CrossRefGoogle Scholar
  46. 46.
    Yu. M. Rotner, V. A. Presnov, N. N. Golembievskii, L. F. Litovchenko, S. M. Rotner, and V. A. Laptev, “Negative resistance effect in synthetic semiconducting diamonds”, Sov. Phys. Semicond. 8 (10), 1293 (1975).Google Scholar
  47. 47.
    A. V. Bogdanov and I. M. Vikulin, “Negative N--type resistance of polycrystalline synthetic semiconducting diamond”, Sov. Phys. Semicond. 15 (4), 458 (1981).Google Scholar
  48. 48.
    A. V. Bogdanov, I. M. Vikulin, T. V. Boganova, E.G. Grigoryan, and M. A. Matosyan, “Relaxation phenomena in an N-type negative resistance region of synthetic semiconducting diamonds”, Sov. Phys. Semicond. 15 (1), 36 (1981).Google Scholar
  49. 49.
    R. A. Smith, Semiconductors. Cambridge University Press, Cambridge (1978), Ch. 5.Google Scholar
  50. 50.
    K. Okano, H. Naruki, Y. Akiba, T. Kurosu, M. Iida, and T. Hirose, “Synthesis of diamond thin films having semiconductive properties”, Jpn. J. Appl. Phys. 27 (2), L173 (1988).CrossRefGoogle Scholar
  51. 51.
    A. Masood, M. Aslam, M. A. Tamor, and T. J. Potter, “Synthesis and electrical characterization of boron-doped thin diamond films”, Appl. Phys. Lett. 61 (15), 1832 (1992).CrossRefGoogle Scholar
  52. 52.
    K. Okano, H. Kiyota, T. Iwasaki, Y. Nakamura, Y. Akiba, T. Kurosu, M. Iida, and T. Nakamura, “Synthesis of n-type semiconducting diamond film using diphosphorous pentaoxide as the doping source”, Appl. Phys. A 51, 344 (1990).CrossRefGoogle Scholar
  53. 53.
    K. Seeger, Semiconductor Physics. Springer-Verlag, Berlin, 1991, Chapter 4.CrossRefGoogle Scholar
  54. 54.
    Seeger, Chapter 7.Google Scholar
  55. 55.
    Russell and W. J. Leivo, “High-field magnetoresistance of semiconducting diamond”, Phys. Rev. B 6 (12), 4588 (1972).CrossRefGoogle Scholar
  56. 56.
    P. J. Kemmey and E. W. J. Mitchell, “The magneto-resistance of p-type semiconducting diamond”, Proc. Roy. Soc. London 263A, 420 (1961).Google Scholar
  57. 57.
    M. Aslam, I. Taher, A. Masood, M. A. Tamor, and T. J. Potter, “Piezoresistivity in vapor-deposited diamond films”, Appl. Phys. Lett. 60 (23), 2923 (1992).CrossRefGoogle Scholar
  58. 58.
    O. Dorsch, K. Holzner, M. Werner, E. Obermeier, R. E. Harper, C. Johnston, P. R. Chalker, and I. M. Buckley-Golder, Diamond and Related Materials 2, 1096 (1993).CrossRefGoogle Scholar
  59. 59.
    M. I. Landstrass and K. V. Ravi, “Resistivity of chemical vapor deposited diamond films”, Appl. Phys. Lett. 55 (10) 975 (1989).CrossRefGoogle Scholar
  60. 60.
    M. A. Piano, S. Zhao, C. F. Gardinier, M. I. Landstrass, D. R. Kania, H. Kagan, K. K. Gan, R. Kass, L. S. Pan, S. Han, S. Schnetzer, and R. Stone, “Thickness dependence of the electrical characteristics of chemical vapor deposited diamond films”, Appl. Phys. Lett. 64 (2), 193 (1994).CrossRefGoogle Scholar
  61. 61.
    S. Ashok, K. Srikanth, A. Badzian, T. Badzian, and R. Messier, “Space-charge-limited current in thin film diamond”, Appl. Phys. Lett. 50 (12), 763 (1987).CrossRefGoogle Scholar
  62. 62.
    J. Mort, M. A. Machonkin and K. Okumura, “Electronic transport and density of states distribution in diamond thin films”, Diamond and Related Materials, 1, 673 (1992).CrossRefGoogle Scholar
  63. 63.
    M. Werner, O. Dorsch, A. Hinze, E. Obermeier, R. E. Harper, C. Johnston, P. R. Chalker, and I. M. buckley-Golder, “Space-charge-limited current flow and trap density inundoped diamond films”, Diamond and Related Materials, 2, 825 (1993).CrossRefGoogle Scholar
  64. 64.
    B. Huang and D. K. Reinhard, “Electric field-dependent conductivity of polycrystalline diamond thin films”, Appl Phys. Lett. 59 912), 1494 (1991).CrossRefGoogle Scholar
  65. 65.
    Y. Muto, T. Sugino, J. Shirafuji, and K. Kobashi, “Electrical conduction in undoped diamond films prepared by chemical vapor deposition”, Appl. Phys. Lett. 59 (7), 843 (1991).CrossRefGoogle Scholar
  66. 66.
    G. A. Sokolina, A. A. Botev, L. L. Builov, S. V. Bantsekov, O. I. Lazareva, and A. F. Belyanin, “Temperature and frequency dependences of the electrical conductivity of diamond films”, Sov. Phys. Semicond. 24 (1), 105 (1990).Google Scholar
  67. 67.
    D. M. Malta, J. A. von Windheim, and B. A. Fox, “Comparison of electronic transport in boron-doped homoepitaxial, polycrystalline, and natural single-crystal diamond”, Appl. Phys. Lett. 62 (23), 2926 (1993).CrossRefGoogle Scholar
  68. 68.
    B. R. Stoner, C. Kao, D. M. Malta, and R. C. Glass, “Hall effect measurements on borondoped, highly oriented diamond films grown on silicon via microwave plasma chemical vapor deposition”, Appl. Phys. Lett. 62 (191) 2347 (1993).CrossRefGoogle Scholar
  69. 69.
    J. A. von Windheim, V. Venkatesan, D. M. Malta, and K. Das, “Comparison of the electric properties of single-crystal and polycrystalline diamond by Hall effect and capacitance-voltage measurements”, Diamond and Related Materials, 2, 841 (1993).CrossRefGoogle Scholar
  70. 70.
    L. S. Pan, S. Han, D. R. Kania, M. A. Piano, and M. I. Landstrass, “Electrical properties of high quality diamond films”, Diamond and Related Materials 2, 820 (1993).CrossRefGoogle Scholar
  71. 71.
    M. A. Piano, M. I. Landstrass, L. S. Pan, S. Han, D. R. Kania, S. McWilliams, and J. W. Ager III, “Polycrystalline CVD diamond films with high electrical mobility”, Science 260, 1310 (1993).CrossRefGoogle Scholar
  72. 72.
    J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, and W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond”, J. Appl. Phys. 71, 5353 (1992); see also Chapter 7.CrossRefGoogle Scholar
  73. 73.
    R. J. Graham and K. V. Ravi, “Cathodoluminescence investigation of impurities and defects in single crystal diamond grown by the combustion-flame method”, Appl. Phys. Lett. 60 (11), 1310 (1992).CrossRefGoogle Scholar
  74. 74.
    S. Jin, T. D. Moustakas, “Electrical conductivity studies of diamond films prepared by electron cyclotron resonance microwave plasma”, Appl. Phys. Lett. 63 (17), 2354 (1993).CrossRefGoogle Scholar
  75. 75.
    J. Mort, M. Machonkin and K. Okumura, “Charge transport in boron-doped diamond thin films”, Phil. Mag. 63 (5), 1031 (1991).CrossRefGoogle Scholar
  76. 76.
    K. Nishimura, K. Das, and J. T. Glass, “Material and electrical characterization of polycrystalline boron-doped diamond films grown by microwave plasma chemical vapor deposition”, J. Appl. Phys. 69 (5), 3142 (1991).CrossRefGoogle Scholar
  77. 77.
    M. Werner, O. Dorsch, H. U. Baerwind, E. Obermeier, L. Haase, W. Seifert, A. Ringhandt, C. Johnston, S. Romani, H. Bishop and P. R. Chalker, “Charge transport in heavily B-doped polycrystalline diamond films”, Appl. Phys. Lett. 64 (5), 595 (1994).CrossRefGoogle Scholar
  78. 78.
    See, for example, R. A. Smith, Semiconductors. 2nd Ed, Cambridge University Press, Cambridge, 1978Google Scholar
  79. 78a.
    C. M. Wolfe, N. Holonyk, Jr, G. E. Stillman, Physical Properties of Semiconductors. Prentice Hall, 1989.Google Scholar
  80. 78b.
    M. Shur, Physics of Semiconductor Devices. Prentice Hall, 1990.Google Scholar
  81. 78c.
    K.Seeger,Semiconductor Pysics,Springer-verlag (Berlin),Ch.8 (1989)Google Scholar
  82. 79.
    R. N. Hall, “Electron-hole recombination in germanium”, Phys. Rev. 87 , 387 (1952)CrossRefGoogle Scholar
  83. 79a.
    W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons”, Phys. Rev, 87 835 (1952).CrossRefGoogle Scholar
  84. 80.
    D. R. Kania, L. S. Pan, O. L. Landen, H. Kornblum, P. Pianetta and M. D. Perry, “Absolute x-ray power measurements with subnanosecond time resolution using type IIa diamond photoconductors”, J. Appl. Phys., 68 (1), 124 (1990).CrossRefGoogle Scholar
  85. 81.
    E. Aluker, St. Chernov and V. Gavrilov, “Subnanosecond luminescence in diamonds”, Phys. Stat. Sol. (b), 172, K25 (1992).Google Scholar
  86. 82.
    G. K. Wertheim and G. L. Pearson, “Recombination in plastically deformed germanium”, Phys. Rev. 107 (3), 694 (1957).CrossRefGoogle Scholar
  87. 83.
    E. A. Konorova, S. F. Kozlov, V. S. Vavilov, “Ionization currents in diamonds during irradiation with 500 -1000 keV electrons”, Sov. Phys. -Solid State 8 (1), 1 (1966).Google Scholar
  88. 84.
    S. C. Binari, M. Marchywka, D. A. Koolbeck, H. B. Dietrich and D. Moses, “Diamond metal-semiconductor-metal eltraviolet photodetectors”, Diamond and Related Material, 2 , 1020 (1993).CrossRefGoogle Scholar
  89. 85.
    L. A. Vermeulen, J. F. Young, M. I. Gallant and H. M. van Driel, “Ultrafast photoconductive response of semiconducting diamond”, Sol. St. Comm., 38, 1223 (1981).CrossRefGoogle Scholar
  90. 80.
    J. F. Young, L. A. Vermeulen, D. J. Moss and H. M. van Driel, “Subnanosecond timeresolved photoconductive response of semiconducting diamond”, Appl. Phys. Lett., 42 (5), 434 (1983).CrossRefGoogle Scholar
  91. 87.
    G. N. Bezrukow, V. P. Butuzov, N. N. Gerasimenko, L. V. Lezheiko, Yu. A. Litviin and L. S. Smirnov, “Some electrical and optical properties of synthetic semiconducting diamonds doped with boron”, Sov. Phys. Semicond. 4, 587 (1970).Google Scholar
  92. 88.
    M. A. Piano, M. I. Landstrass, S. Han, L. S. Pan, S. McWilliams and D. R. Kania, Proc. Third Int. Sym. Diamond Mat., The Electrochemical Society, Inc., 93–17, 986 (1993).Google Scholar
  93. 89.
    L. S. Pan, Ph. D. Dissertation, Stanford University, 1991.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • S. Han
    • 1
  • L. S. Pan
    • 2
  • D. R. Kania
    • 3
  1. 1.Los Alamos National LaboratoryUSA
  2. 2.Sandia National LaboratoryUSA
  3. 3.Lawrence Livermore National LaboratoryUSA

Personalised recommendations