Transistor-Based Characterization Techniques

  • Sorin Cristoloveanu
  • Sheng S. Li
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 305)


Sophisticated characterization methods have been developed, essentially during the last decade, with the aim of taking a closer look at the electrical properties of SOI materials. Even after complete processing of integrated circuits, the interface quality and some of the crystalline imperfections of the incipient SOI wafer are still transparent in transistor characteristics.


Electrical Characterization Charge Pump Gate Bias Interface Trap Strong Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.H. Lee, S. Cristoloveanu, and A. Chovet, “Non-homogeneous electrical transport through silicon-on-sapphire thin films: evidence of the internal stress influence,” Solid-State Electron. vol. 25, p. 947, 1982.CrossRefGoogle Scholar
  2. [2]
    S. Cristoloveanu, J.H. Lee, and A. Chovet, “Effets galvanomagnétiques dans les semiconducteurs anisotropes inhomogènes; application à la caractérisation des films de silicium sur saphir,” Rev.Phys. Appl. vol. 15, p. 725, 1980.CrossRefGoogle Scholar
  3. [3]
    A.C. Ipri, “Electrical properties of silicon films on sapphire using the MOS Hall technique,” J. Appl. Phys. vol. 43, p. 2770, 1972.CrossRefGoogle Scholar
  4. [4]
    A.B.M. Elliot and J.C. Anderson, “An investigation of carrier transport in thin silicon on sapphire films using MIS deep depletion Hall effect structures,” Solid-State Electron. vol. 15, p. 531, 1972.CrossRefGoogle Scholar
  5. [5]
    J.L. Robert, B. Pistoulet, A. Raymond, J.M. Dusseau, and G.M. Martin, “New model of conduction mechanism in semi-insulating GaAs,” J. Appl. Phys. vol. 50, p. 349, 1979.CrossRefGoogle Scholar
  6. [6]
    S. Cristoloveanu, J.H. Lee, J. Pumfrey, J.R. Davis, R.P. Arrowsmith, and P.L.F. Hemment, “Profiling of inhomogeneous carrier transport properties with the influence of temperature in silicon-on-insulator films formed by oxygen implantation,” J. Appl. Phys. vol. 60, p. 3199, 1986.CrossRefGoogle Scholar
  7. [7]
    S. Cristoloveanu, “Silicon films on sapphire,” Rep. Prog. Phys. vol. 50, p. 327, 1987.CrossRefGoogle Scholar
  8. [8]
    S. Onga, K. Hatanaka, S. Kawaji, and Y. Yasuda, “Influence of crystalline defects and residual stress on the electrical characteristics of SOS MOS devices,” Jpn. J. Appl. Phys. vol. 17, p. 413, 1978.CrossRefGoogle Scholar
  9. [9]
    A.L. Lin, R. Maddox, and J.E. Mee, “Electrical characterization of ion implanted silicon on sapphire,” Microelectron. J. vol. 14, p. 22, 1983.CrossRefGoogle Scholar
  10. [10]
    J.H. Lee, S. Cristoloveanu, and A. Chovet, “Transport profiles, the influence of internal stress and potential fluctuations in thin silicon films on sapphire,” Thin Solid Films vol. 89, p. 13, 1982.CrossRefGoogle Scholar
  11. [11]
    T. Elewa, H. Haddara, S. Cristoloveanu, and M. Bruel, “Charge pumping in silicon on insulator structures using P—I—N diodes,” in 18th ESSDERC Conf. Proc. (Montpellier, France) J. Physique vol. 49, suppl. 9, p. C4–137, 1988.Google Scholar
  12. [12]
    D.J. Wouters, M. Tack, G.V. Groeseneken, H. Maes, and C.L. Claeys, “Characterization of front and back Si—Si02interfaces in thick and thin film silicon on insulator structures by the charge pumping technique,” IEEE Trans. Electron Devices vol. 36, p. 1746, 1989.CrossRefGoogle Scholar
  13. [13]
    T. Ouisse, S. Cristoloveanu, T. Elewa, H. Haddara, G. Borel, and D. Ioannou, “Adaptation of the charge pumping technique to gated p—i—n diodes fabricated on silicon on insulator,” IEEE Trans. Electron Devices vol. 38, p. 1432, 1991.CrossRefGoogle Scholar
  14. [14]
    G. Groeseneken, H.E. Maes, N. Beltran, and R.F. de Keersmaecker, “A reliable approach to charge pumping measurements in MOS transistors,” IEEE Trans. Electron Devices vol. 31, p. 42, 1984.CrossRefGoogle Scholar
  15. [15]
    H. Haddara and S. Cristoloveanu, “Profiling of stress-induced interface states in short-channel MOSFETs using a composite charge pumping technique,” Solid-State Electron. vol. 29, p. 767, 1986.CrossRefGoogle Scholar
  16. [16]
    T. Ouisse, S. Cristoloveanu, and G. Borel, “Electron trapping in irradiated SIMOX buried oxides,” IEEE Electron Device Lett. vol. 12, p. 312, 1991.CrossRefGoogle Scholar
  17. [17]
    T. Elewa, B. Kleveland, S. Cristoloveanu, B. Boukriss, and A. Chovet, “Detailed analysis of edge effects in SIMOX-MOS transistors,” IEEE Trans. Electron Devices vol. 39, p. 874, 1992.CrossRefGoogle Scholar
  18. [18]
    F. Hofmann and W. Hansch, “The charge pumping method: experiment and complete simulation,” J. Appl. Phys. vol. 66, p. 3092, 1989.CrossRefGoogle Scholar
  19. [19]
    H.E. Maes and G. Groeseneken, “Determination of the spatial surface state distribution in MOS and SIMOS transistors after channel hot electron injection,” Electron. Lett. vol. 18, p. 372, 1982.CrossRefGoogle Scholar
  20. [20]
    P. Heremans, J. Witters, G. Groeseneken, and H. Maes, “Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation,” IEEE Trans. Electron Devices vol. 36, p. 1318, 1989.CrossRefGoogle Scholar
  21. [21]
    W. L. Tseng, “A new charge pumping method of measuring Si-SiO2interface states,” J. Appl. Phys. vol. 62, p. 591, 1987.CrossRefGoogle Scholar
  22. [22]
    A. Chovet and P. Viktorovitch, “Le bruit électrique,” L’Onde électrique vol. 57, p. 699 and 773, 1977, and vol. 58, p. 69, 1978.Google Scholar
  23. [23]
    A.L. McWhorterSemiconductor Surface PhysicsUniversity of Pennsylvania Press, Philadelphia, p. 207, 1957.Google Scholar
  24. [24]
    G. Ghibaudo, “A simple derivation of Reimbold’s drain current spectrum formula for flicker noise in MOSFETs,” Solid-State Electron. vol. 30, p. 1037, 1987.CrossRefGoogle Scholar
  25. [25]
    S. Christensson, I. Lundstrom, and C. Svensson, “Low frequency noise in MOS transistors,” Solid-State Electron. vol. 11, p. 797, 1968.CrossRefGoogle Scholar
  26. [26]
    G. Ghibaudo, O. Roux, C. Nguyen-Duc, F. Balestra, and J. Brini, “Improved analysis of low frequency noise in field-effect MOS transistors,” Phys. Stat. Sol. (a) vol. 124, p. 571, 1991.CrossRefGoogle Scholar
  27. [27]
    G. Reimbold, “Modified 1/f trapping noise theory and experiments in MOS transistors biased from weak to strong inversion. Influence of interface states,” IEEE Trans. Electron Devices vol. 31, p. 1190, 1984.CrossRefGoogle Scholar
  28. [28]
    Z.H. Fang, A. Chovet, Q.P. Zhu, and J.N. Zhao, “Theory and applications of 1/f trapping noise in MOSFETs for the whole biasing ranges,” Solid-State Electron. vol. 34, p. 327, 1991.CrossRefGoogle Scholar
  29. [29]
    B. Boukriss, H. Haddara, S. Cristoloveanu, and A. Chovet, “Modeling of the 1/f noise overshot in short channel MOSFETs locally degraded by hot carrier injection,” IEEE Electron Device Lett. vol. 10, p. 433, 1989.CrossRefGoogle Scholar
  30. [30]
    Z.H. Fang, “Low-frequency pseudo generation-recombination noise of MOSFETs stressed by channel hot electrons in weak inversion,” IEEE Trans. Electron Devices vol. 33, p. 516, 1986.CrossRefGoogle Scholar
  31. [31]
    Z.H. Fang, S. Cristoloveanu, and A. Chovet, “Analysis of hot carrier induced aging from 1/f noise in short channel MOSFETs,” IEEE Electron Device Lett. vol. 7, p. 371, 1986.CrossRefGoogle Scholar
  32. [32]
    P. Gentil and S. Chaussé, “Low frequency noise measurements in siliconon-sapphire (SOS) MOS transistors,” Solid-State Electron. vol. 20, p. 935, 1977.CrossRefGoogle Scholar
  33. [33]
    O. Roux dit Buisson, G. Ghibaudo, J. Brini, and T. Ouisse, “Measurements and analysis of random telegraph signals in small area SOI MOSFETs,” in Silicon-On-Insulator Technology and Devices W.E. Bailey (ed.), The Electrochemical Society, Pennington, NJ, vol. 92–13, p. 191, 1992.Google Scholar
  34. [34]
    A. Chovet, B. Boukriss, T. Elewa, and S. Cristoloveanu, “Low frequency noise of front channel and back channel MOSFETs fabricated on silicon on insulator SIMOX substrates,” in Noise in Physical Systems C.M. Van Vliet (ed.), World Scientific, Teaneck, NJ, p. 457, 1987.Google Scholar
  35. [35]
    T. Elewa, B. Boukriss, A. Chovet, and S. Cristoloveanu, “Low frequency noise spectroscopy in thin SIMOX MOS transistors,” 1990 IEEE SOS/SOI Technol. Conf. Proc. p. 103, 1990.Google Scholar
  36. [36]
    T. Elewa, B. Boukriss, H.S. Haddara, A. Chovet, and S. Cristoloveanu, “Low-frequency noise in depletion-mode SIMOX MOS transistors,” IEEE Trans. Electron Devices vol. 38, p. 323, 1991.CrossRefGoogle Scholar
  37. [37]
    H. Haddara and G. Ghibaudo, “Analytical modeling of transfer admittance in small MOSFETs and application to interface state characterization,” Solid-State Electron. vol. 31, p. 1077, 1988.CrossRefGoogle Scholar
  38. [38]
    G. Ghibaudo, “An analytical model of conductance and transconductance for enhancement mode MOSFETs,” Phys. Stat. Solidi (a) vol. 95, p. 323, 1986.CrossRefGoogle Scholar
  39. [39]
    T. Elewa, H. Haddara, and S. Cristoloveanu, “Interface properties and recombination mechanisms in SIMOX structures,” in The Physics and Technology of Amorphous Si02 R.A.B. Devine (ed.), Plenum, NY, p. 553, 1988.CrossRefGoogle Scholar
  40. [40]
    U. Sharma, R.V. H. Booth, and M.H. White, “Static and dynamic transconductance of MOSFETs,” IEEE Trans. Electron Devices vol. 36, p. 954, 1989.CrossRefGoogle Scholar
  41. [41]
    D.E. Ioannou, X. Zhong, B. Mazhari, G.J. Campisi, and H.L. Hughes, “Interface characterization of fully depleted SOI MOSFETs by dynamic transconductance technique,” IEEE Electron Device Lett. vol. 12, p. 430, 1991.CrossRefGoogle Scholar
  42. [42]
    H. Haddara, T. Elewa, and S. Cristoloveanu, “Static and dynamic transconductance model for depletion-mode transistors: A new characterization method for silicon-on-insulator materials,” IEEE Electron Device Lett. vol. 9, p. 35, 1988.CrossRefGoogle Scholar
  43. [43]
    H.S. Chen and S.S. Li, “Determination of interface state density in small-geometry MOSFETs by high-low-frequency transconductance method,” IEEE Electron Device Lett. vol. 12, p. 13, 1991.CrossRefGoogle Scholar
  44. [44]
    P.C. Yang, H.S. Chen, and S.S. Li, “Measurements of interface state density in partially-and fully-depleted silicon-on-insulator MOSFETs by a high-low-frequency transconductance method,” Solid-State Electron. vol. 35, p. 1031, 1992.CrossRefGoogle Scholar
  45. [45]
    M. Zerbst, “Relaxation effects at semiconductor-insulator interfaces,” Z. Angew. Phys. vol. 22, p. 30, 1966.Google Scholar
  46. [46]
    D.P. Vu and J.C. Pfister, “Determination of minority carrier generation lifetime in beam-recrystallized silicon-on-insulator by using a depletion-mode transistor,” Appl. Phys. Lett. vol. 47, p. 950, 1985.CrossRefGoogle Scholar
  47. [47]
    R.F. Pierret, “Rapid interpretation of the MOS—C C—t transient,” IEEE Trans. Electron Devices vol. 25, p. 1157, 1978.CrossRefGoogle Scholar
  48. [48]
    D.E. Ioannou, S. Cristoloveanu, M. Mukherjee, and B. Mazhari, “Characterization of carrier generation in enhancement-mode SOI MOSFETs,” IEEE Electron Device Lett. vol. 11, p. 409, 1990.CrossRefGoogle Scholar
  49. [49]
    P.W. Barth and J.B. Angell, “A dual-gate deep-depletion technique for generation lifetime measurements,” IEEE Trans. Electron Devices vol. 27, p. 2252, 1980.CrossRefGoogle Scholar
  50. [50]
    T.I. Kamins, “Minority-carrier lifetime in dielectrically isolated single-crystal silicon films defined by electrochemical etching,” Solid-State Electon. vol. 17, p. 675, 1974.CrossRefGoogle Scholar
  51. [51]
    A. lonescu and S. Cristoloveanu, “Carrier generation in thin SIMOX films by deep-depletion pulsing of MOS transistors,” Nucl. Instr.Methods Phys. Res. vol. B84, p. 265, 1994.Google Scholar
  52. [52]
    N. Yasuda, K. Taniguchi, C. Hamaguchi, Y. Yamaguchi, and T. Nishimura, “New carrier lifetime measurement method for fully depleted SOI MOSFETs,” IEEE Trans. Electron Devices vol. 39, p. 1197, 1992.CrossRefGoogle Scholar
  53. [53]
    D. Kimpton and J. Kerr, “Generation lifetime, interface state density, active defect density and oxide resistivity measurements for SOI—MOSFETs and their radiation dependence,” IEEE Trans. Nucl. Sci. vol. 39, p. 2126, 1992.CrossRefGoogle Scholar
  54. [54]
    D.K. Schroder, Y.D. Whitfield, and C.J. Varker, “Recombination lifetime using the pulsed MOS capacitor,” IEEE Trans. Electron Devices vol. 31, p. 462, 1984.CrossRefGoogle Scholar
  55. [55]
    H. Haddara, M.T. Elewa, and S. Cristoloveanu, “Measurement and modeling of drain current DLTS in enhancement SOI MOSFETs,” Microelectron. J. vol. 24, p. 647, 1993.CrossRefGoogle Scholar
  56. [56]
    P.K. McLarty, D.E. Ioannou, and H.L. Hughes, “Deep states in silicon-oninsulator substrates prepared by oxygen implantation using current deep level transient spectroscopy,” Appl. Phys. Lett. vol. 53, p. 871, 1988.CrossRefGoogle Scholar
  57. [57]
    J.W. Chen, R.J. Ko, D.W. Brzezinski, L. Forbes, and C.J. Dell’oca, “Bulk traps in silicon-on-sapphire by conductance DLTS,” IEEE Trans. Electron Devices vol. 28, p. 299, 1981.CrossRefGoogle Scholar
  58. [58]
    P.K. McLarty and D.E. Ioannou,“Bulk traps in ultra-thin SIMOX MOSFETs by current DLTS,” IEEE Electron Device Lett. vol. 9, p. 545, 1988.CrossRefGoogle Scholar
  59. [59]
    H.K. Lim and J.G. Fossum, “Threshold voltage of thin-film silicon-oninsulator (SOI) MOSFETs,” IEEE Trans. Electron Devices vol. 30, p. 1244, 1983.CrossRefGoogle Scholar
  60. [60]
    D.P. Vu, P.M. Zavracky, M.J. Boden, and N.K. Cheong, “A simple electrical method to determine the Si and oxide thicknesses in SOI materials,” IEEE Electron Device Lett. vol. 12, p. 427, 1991.CrossRefGoogle Scholar
  61. [61]
    J. Chen, R. Solomon, T.Y. Chan, P.K. Ko, and C. Hu, “A CV technique for measuring thin SOI film thickness,” IEEE Electron Device Lett. vol. 12, p. 453, 1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Sorin Cristoloveanu
    • 1
  • Sheng S. Li
    • 1
  1. 1.Polytechnic Institute of GrenobleFrance

Personalised recommendations