Photorefractive Transport and Multiwave Mixing

  • D. D. Nolte
Part of the Electronic Materials: Science and Technology book series (EMST)


The photorefractive effect [1] can loosely be defined as a light-induced change in the optical properties of a material when the incident light is spatially nonuniform. The spatial nonuniformity is a key feature that distinguishes the photorefractive effect from other common nonlinear optical effects that occur under spatially uniform intensities [2, 3]. In other words, the optical changes are driven by the gradient of the intensity, rather than by the intensity itself.


Diffraction Efficiency Fringe Spacing Photorefractive Crystal Photorefractive Effect Photorefractive Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett., vol. 9, p. 72 (1966)CrossRefGoogle Scholar
  2. [2]
    N. Bloembergen, Nonlinear Optics (New York, W. A. Bengamin, 1965)Google Scholar
  3. [3]
    Y. R. Shen, The Principles of Nonlinear Optics (New York, Wiley, 1984)Google Scholar
  4. [4]
    G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert and F. Boggess, “Picosecond photorefractive beam coupling in GaAs”, Opt. Lett., vol. 11, pp. 647649 (1986)CrossRefGoogle Scholar
  5. [5]
    C. T. Chen, D. M. Kim and D. von der Linde, IEEE J. Quant. Electron., vol. QE-16, p. 126 (1980)CrossRefGoogle Scholar
  6. [6]
    A. Smirl, K. Bohnert, G. C. Valley, R. A. Mullen and T. F. Boggers, J. Opt. Soc. Am., vol. B6, p. 606 (1989)CrossRefGoogle Scholar
  7. [7]
    G. Pauliat and G. Roosen, J. Opt. Soc. Am., vol. B7, p. 2259 (1990)CrossRefGoogle Scholar
  8. [8]
    L. Disdier and G. Roosen, Opt. Commun., vol. 88, p. 559 (1992)CrossRefGoogle Scholar
  9. [9]
    F. S. Chen, J. T. LaMacchia and D. B. Frazer, Appl. Phys. Lett., vol. 13, p. 223 (1968)CrossRefGoogle Scholar
  10. [10]
    D. L. Staebler and J. J. Amodei, Ferroelectrics, vol. 3, p. 107 (1972)CrossRefGoogle Scholar
  11. [11]
    F. Micheron, C. Mayeux and J. C. Trotier, Appl. Opt., vol. 13, p. 784 (1974)CrossRefGoogle Scholar
  12. [12]
    P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep., vol. 93, pp. 199–299 (1982)CrossRefGoogle Scholar
  13. [13]
    T. J. Hall, R. Jaura, L. M. Conners and P. D. Foote, “The Photorefractive Effect-A Review,” Prog. Quant. Electron., vol. 10, pp. 77–146 (1985)CrossRefGoogle Scholar
  14. [14]
    J. Feinberg, “Photorefractive Nonlinear Optics,” Phys. Today, vol. 41, p. 46 (1988)CrossRefGoogle Scholar
  15. [15]
    P. Gunter and J.-P. Huignard, Photorefractive Materials and Their Applications I and II. in Topics in Applied Physics 61, (Springer-Verlag, Berlin, 1988)Google Scholar
  16. [16]
    M. P. Petrov, S. I. Stepanov and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Berlin, Springer-Verlag, 1991)CrossRefGoogle Scholar
  17. [17]
    P. Yeh, Introduction to Photorefractive Nonlinear Optics (New York, John Wiley & Sons, Inc., 1993)Google Scholar
  18. [18]
    Gower and Proch, Optical Phase Conjugation. (Springer Verlag, Berlin, 1994)Google Scholar
  19. [19]
    P. Hariharan, Optical Holography (Cambridge, Cambridge University Press, 1984)Google Scholar
  20. [20]
    V. Markov, S. Odulov and M. Soskin, Opt. Laser Technol, vol. 95, p. (1979)Google Scholar
  21. [21]
    R. S. Rana, D. D. Nolte, R. Steldt and E. M. Monberg, “Temperature dependence of the photorefractive effect in InP:Fe: role of multiple defects,” J. Opt. Soc. Am., vol. B9, p. 1614 (1992)CrossRefGoogle Scholar
  22. [22]
    M. Lannoo and J. Bourgoin, Point Defects in Semiconductors I (Berlin, Springer-Verlag, 1981)CrossRefGoogle Scholar
  23. [23]
    J. Bourgoin and M. Lannoo, Point Defects in Semiconductors II (Berlin, Springer-Verlag, 1983)CrossRefGoogle Scholar
  24. [24]
    Lucovsky, Sol. St. Commun., vol. 3, p. 299 (1965)CrossRefGoogle Scholar
  25. [25]
    M. Lannoo, G. A. Barraff and M. Schlueter, “Self-consistent second-order perturbation treatment of multiplet structures using local density theory,” Phys. Rev. B, vol. 24, p. 943 (1981)CrossRefGoogle Scholar
  26. [26]
    D. D. Nolte, N. M. Haegel and K. W. Goossen, Photo-Induced Space-Charge Effects in Semiconductors: Electro-Optics. Photoconductivity and the Photorefractive Effect. MRS Symposium Proceedings 261, (MRS, Pittsburgh, 1992)Google Scholar
  27. [27]
    V. L. Vinetskii and N. V. Kukhtarev, “Theory of the conductivity induced by recording holographic gratings in nonmetallic crystals,” Sov. Phys.-Solid State, vol. 16, p. 2414 (1975)Google Scholar
  28. [28]
    N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett., vol. 2, p. 438 (1976)Google Scholar
  29. [29]
    N. Kukhtarev, V. Markov, S. Odulov, M. Soskin and V. Vinetskii, “Holographic Storage in Electrooptic Crystals. Beam Coupling-Light Amplification,” Ferroelectrics, vol. 22, p. 949 (1979)CrossRefGoogle Scholar
  30. [30]
    G. C. Valley and M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng., vol. 22, p. 704 (1983)CrossRefGoogle Scholar
  31. [31]
    J. Feinberg, D. Heiman Jr., A. R. Tanguay and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys., vol. 51, p. 1297 (1980)CrossRefGoogle Scholar
  32. [32]
    R. A. Mullen and R. W. Hellwarth, “Optical measurement of the photorefractive parameters of BSO,” J. Appl. Phys., vol. 58, p. 40 (1985)CrossRefGoogle Scholar
  33. [33]
    J. M. C. Jonathan, R. W. Hellwarth and G. Roosen, “Effect of applied electric field on the bulidup and decay of photorefractive gratings,” IEEE J. Quant. Electron., vol. QE-22, p. 1936 (1986)CrossRefGoogle Scholar
  34. [34]
    M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3 at 422 nm,” J. Appl. Phys., vol. 57, pp. 4901–4905 (1985)CrossRefGoogle Scholar
  35. [35]
    R. Orlowski and E. Krätzig, “Holographic method for determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun., vol. 27, p. 1351 (1978)CrossRefGoogle Scholar
  36. [36]
    G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys., vol. 59, pp. 3363–3366 (1986)CrossRefGoogle Scholar
  37. [37]
    F. P. Strohkendl, J. M. C. Jonathon and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett., vol. 11, p. 312 (1986)CrossRefGoogle Scholar
  38. [38]
    S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650 oC,” J. Opt. Soc. Am., vol. B3, pp. 283–292 (1986)CrossRefGoogle Scholar
  39. [39]
    D. D. Nolte, D. H. Olson and A. M. Glass, “Nonequilibrium screening of the photorefractive effect,” Phys. Rev. Lett., vol. 63, pp. 891–894 (1989)CrossRefGoogle Scholar
  40. [40]
    D. D. Nolte, D. H. Olson and A. M. Glass, “Deep level photodiffractive spectroscopy of semiconductors,” Appl. Phys. Lett., vol. 56, pp. 163–165 (1990)CrossRefGoogle Scholar
  41. [41]
    D. D. Nolte and A. M. Glass, “Nonequilibrium charge transfer and lowtemperature photorefractive effects,” Opt. Quant. Electron., vol. 22, pp. S47–S60 (1990)Google Scholar
  42. [42]
    D. D. Nolte, D. H. Olson and A. M. Glass, “Spontaneous current oscillations in optically pumped semi-insulating inP”, J. Appl. Phys., vol. 68, p. 4111 (1990)CrossRefGoogle Scholar
  43. [43]
    V. F. Belinicher and B. I. Sturman, “The photogalvanic effect in media lacking a center of symmetry,” Sov. Phys. — Usp., vol. 23, p. 199 (1980)CrossRefGoogle Scholar
  44. [44]
    S. G. Odulov, “Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals,” JETP Lett., vol. 35, p. 10 (1982)Google Scholar
  45. [45]
    M. G. Moharam, T. K. Gaylord and R. Magnusson, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys., vol. 50, p. 5642 (1979)CrossRefGoogle Scholar
  46. [46]
    V. M. Fridkin and R. M. Magomadov, “Anomalous photovoltaic effect in LiNbO3:Fe in polarized light,” JETP Lett, vol. 30, p. 686 (1980)Google Scholar
  47. [47]
    A. M. Glass, D. von der Linde and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett., vol. 25, p. 233 (1974)CrossRefGoogle Scholar
  48. [48]
    A. M. Glass, D. von der Linde, D. H. Auston and T. J. Negran, J. Electron. Mat., vol. 4, p. 915 (1975)CrossRefGoogle Scholar
  49. [49]
    D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys., vol. 8, pp. 85-100 (1975)Google Scholar
  50. [50]
    G. Chanussot and A. M. Glass, “A bulk photovoltaic effect due to electronphonon coupling in polar crystals,” Phys. Lett., vol. 59A, p. 405 (1976)Google Scholar
  51. [51]
    G. Chanussot, Ferroelectrics, vol. 20, p. 37 (1978)CrossRefGoogle Scholar
  52. [52]
    H. G. Festl, P. Hertel, E. Krätzig and R. von Baltz, “Investigation of the photovoltaic tensor in doped LiNbO3,” Phys. Stat. Solidi, vol. B113, p. 157 (1982)CrossRefGoogle Scholar
  53. [53]
    P. Gunter, “Electric-field dependence of phase-conjugate wave-front reflectivity in reduced KNbO3 and BGO,” Opt. Lett., vol. 7, p. 10 (1982)CrossRefGoogle Scholar
  54. [54]
    J. F. Lam, “Origin of phase conjugate waves in self-pumped photorefractive mirrors,” Appl. Phys. Lett., vol. 46, p. 909 (1985)CrossRefGoogle Scholar
  55. [55]
    G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Applications 61, pp. 75–98 (Springer-Verlag, Berlin, 1988)CrossRefGoogle Scholar
  56. [56]
    J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in twowave mixing experiments with photorefractive BSO crystals,” Opt. Commun., vol. 38, pp. 249–254 (1981)CrossRefGoogle Scholar
  57. [57]
    S. I. Stepanov, V. V. Kulikov and M. P. Petrov, Sov. Tech. Phys. Lett., vol. 8, pp. 229–230 (1982)Google Scholar
  58. [58]
    S. I. Stepanov, V. V. Kulikov and M. P. Petrov, “Running holograms in photorefractive BSO crystals,” Opt. Commun., vol. 44, pp. 19–23 (1982)CrossRefGoogle Scholar
  59. [59]
    S. I. Stepanov and M. P. Petrov, Sov. Tech. Phys. Lett., vol. 10, pp. 572–573 (1984)Google Scholar
  60. [60]
    S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field,” Opt. Commun., vol. 53, pp. 292–295 (1985)CrossRefGoogle Scholar
  61. [61]
    N. Kukhtarev, V. Markov and S. Odulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun., vol. 23, p. 338 (1977)CrossRefGoogle Scholar
  62. [62]
    G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quant. Electron., vol. QE-19, p. 1637 (1983)CrossRefGoogle Scholar
  63. [63]
    D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox and A. M. Glass, “Resonant photodiffractive effect in semi-insulating multiple quantum wells,” J. Opt. Soc. Am., vol. B7, p. 2217 (1990)CrossRefGoogle Scholar
  64. [64]
    M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski and R. R. Dube, “Introduction, revelation, and evolution of complementary gratings in photorefractive BSO,” Phys. Rev. B, vol. 42, p. 5641 (1990)CrossRefGoogle Scholar
  65. [65]
    M. C. Bashaw, T. Ma, R. C. Barker, S. Mroczkowski and R. R. Dube, “Theory of Complementry Holograms arising from electron-hole Transport in Photorefractive Media,”, J. Opt. Soc. Am. B, vol. 7, p. 2329 (1990)CrossRefGoogle Scholar
  66. [66]
    G. Picoli, P. Gravey, C. Ozkul and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: A new mechanism of resonance,” J. Appl. Phys., vol. 66, p. 3798 (1989)CrossRefGoogle Scholar
  67. [67]
    D. J. Chadi and K. J. Chang, “Metastability of the isolated arsenic-antisite defect in GaAs,” Phys. Rev. Lett., vol. 60, pp. 2187–2190 (1988)CrossRefGoogle Scholar
  68. [68]
    J. Dabrowski and M. Scheffler, “Theoretical evidence for an optically inducible structural transition of the isolated As antisite in GaAs: identification and explanation of EL2?”, Phys. Rev. Lett., vol. 60, pp. 2183–2186 (1988)CrossRefGoogle Scholar
  69. [69]
    J. Dabrowski and M. Scheffler, “Isolated arsenic-antisite defect in GaAs and the properties of EL2,” Phys. Rev. B, vol. 40, p. 10391 (1989)CrossRefGoogle Scholar
  70. [70]
    D. J. Chadi and K. J. Chang, Phys. Rev. B, vol. 39, p. 10063 (1989)CrossRefGoogle Scholar
  71. [71]
    P. M. Mooney, J. Appl. Phys., vol. 67, p. Rl (1990)CrossRefGoogle Scholar
  72. [72]
    D. D. Nolte, D. H. Olson and A. M. Glass, “Spatial modulation of the Fermi level by coherent illumination of undoped GaAs,” Phys. Rev., vol. B40, pp. 10650–10652 (1989)CrossRefGoogle Scholar
  73. [73]
    D. D. Nolte and R. S. Rana, “Modulation Doping with Coherent Photons,” in Proceedings of 20th Int. Conf. Phys. Semicond., p. 2247 (World Scientific, 1990)Google Scholar
  74. [74]
    R. A. Linke, T. Thio, J. Chadi and G. E. Devlin, “Diffraction from optically written persistent plasma gratings in doped compound semiconductors,” Appl. Phys. Lett., vol. 65, p. 16 (1994)CrossRefGoogle Scholar
  75. [75]
    A. Yariv and P. Yeh, Optical Waves in Crystals (New York, John Wiley & Sons, 1984)Google Scholar
  76. [76]
    J. Strait, J. D. Reed and N. V. Kukhtarev, “Orientational dependence of photorefractive two-beam coupling in InP:Fe,” Opt. Lett., vol. 15, p. 209 (1990)CrossRefGoogle Scholar
  77. [77]
    R. S. Rana, E. Oh, K. Chua, A. K. Ramdas and D. D. Nolte, “Magnetophotorefractive effects in a diluted magnetic semiconductor,” Phys. Rev. B, vol. 49, p. 7941 (1994)CrossRefGoogle Scholar
  78. [78]
    A. Yariv, IEEE J. Quant. Electron., vol. QE-14, p. 650 (1978)CrossRefGoogle Scholar
  79. [79]
    R. W. Hellwarth, J. Opt. Soc. Am., vol. 67, p. 1 (1977)CrossRefGoogle Scholar
  80. [80]
    B. Y. Zeldovich, N. F. Pilipeetskii and V. V. Shkunov, Sov. Phys. — Usp., vol. 25, p. 713 (1982)CrossRefGoogle Scholar
  81. [81]
    H. J. Eichler, P. Gunter and D. W. Pohl, Laser-Induced Dynamic Gratings (Berlin, Springer-Verlag, 1986)CrossRefGoogle Scholar
  82. [82]
    H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J., vol. 48, p. 2909 (1969)CrossRefGoogle Scholar
  83. [83]
    R. A. Fischer, Optical Phase Conjugation (New York, Academic Press, 1983)Google Scholar
  84. [84]
    J. Feinberg, Opt. Lett., vol. 7, p. 486 (1982)CrossRefGoogle Scholar
  85. [85]
    J.-I. Sakai, Phase Conjugate Optics (New York, McGraw-Hill, 1992)Google Scholar
  86. [86]
    B. Fischer, M. Cronin-Golomb, J. O. White and A. Yariv, “Amplified reflection, transmission and self-oscillation in real time holography,” Opt. Lett., vol. 6, p. 519 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. D. Nolte
    • 1
  1. 1.Department of PhysicsPurdue UniversityWest LafayetteUSA

Personalised recommendations