Contamination Control and Etch

  • Badih El-Kareh


Clean and etch processes are used to selectively remove organic and inorganic materials from patterned and unpatterned substrate surfaces. When a process is used to remove particulates or unwanted films, it is called cleaning. When a film which was intentionally deposited or grown is removed, the process is called etching. If implemented in a liquid form, these processes are referred to as wet cleaning or etching. Processes that use gases to remove materials by momentum transfer, or by plasma or photo assisted chemical reactions are called dry cleaning or etching. This chapter discusses wet and dry clean and etch processes used in the manufacture of submicron semiconductor devices.


Silicon Surface Etch Rate Wafer Surface Plasma Etching Gate Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. S. Burggraaf, “Wafer Cleaning: Brush and High-Pressure Scrubbers,” Semiconductor International, 4(7), 71 (1981).Google Scholar
  2. [2]
    T. H attori, “Contamination-Control Engineering in Wafer Processing: Problems and Prospects,” Technical Proceedings SIMCON/Japan 1989, pp. 244–255.Google Scholar
  3. [3]
    W. Kern, “The Evolution of Silicon Wafer Cleaning Technology,” J. Electrochem. Soc., 137(6), 1887 (1990).CrossRefGoogle Scholar
  4. [4]
    V. Ramakrishna and J. Harrigan, “Defect Learning Requirements,” Solid State Technology, (1), 103–105 (1989).Google Scholar
  5. [5]
    A. J. Muller, L. A. Psota-Kelty, J. D. Sinclair, and P. W. Morrisson, “Concentrations of Organic Vapors and their Surface Arrival Rates at Surrogate Wafers During Processing in Clean Rooms,” Proceedings of the First International Symposium of Cleaning Technology in Semiconductor Device Manufacturing, Vol. 90-9, J. Ryzyllo and R. E. Novak, Eds., pp. 204–211, The Electrochem. Soc., Inc., New Jersey (1989).Google Scholar
  6. [6]
    Federal Standard “Airborne Particulate Cleanliness Classes in Clean Rooms and Clean Zones,” FED-STD-209E, September 11, 1992.Google Scholar
  7. [7]
    G. E. Helmke, “Anatomy of a Pure Water System,” Semiconductor International, p. 119, Aug. 1981.Google Scholar
  8. [8]
    J. McHardy, “Particulate Removal with Dense CO2 Fluids,” Third International Workshop on Solvent Substitution, Phoenix, AZ, Dec. 8–11, 1992.Google Scholar
  9. [9]
    A. Mayer and S. Schwartzman, “Megasonic Cleaning: A New Cleaning and Drying System for Use in Semiconductor Processing,” J. Electron. Mat., 8, 885 (1979).CrossRefGoogle Scholar
  10. [10]
    W. Kern and D. Puotinen, “Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology,” RCA Review, 31, 187–206, (1970).Google Scholar
  11. [11]
    Y. J. Ghabal, G. S. Higashi, K. Raghavachari, and V. A. Borrows, “Infrared Spectroscopy of Si(111) and Si(100) Surface after HF Treatment: Hydrogen Termination and Surface Morphology,” J. Vac. Sci. & Technol. A 7, 2104 (1989).Google Scholar
  12. [12]
    P. O. Hahn, M. Grundner, A. Schnegg, and H. Jacob, “The Si-SiO 2 Interface Roughness: Causes and Effects,” in the Physics and Chemistry of SiO2 and the Si-SiO2 Interface, R. Helms and Deal, Eds., pp. 401–411, Proceedings of the 173rd Meeting of the Electrochem. Soc., New York (1988).Google Scholar
  13. [13]
    M. Hirose, T. Yasaka, K. Kanda, M. Takakura, and S. Miyasaki, “Behavior of Hydrogen and Fluorine Bonds on Chemically Cleaned Silicon Surfaces,” Proceedings of the Second International Symposium of Cleaning Technology in Semiconductor Device Manufacturing, Vol. 92-12, pp. 1–9, J. Ruzyllo and R. E. Novak, Eds., The Electrochem. Soc., Inc., New Jersey.Google Scholar
  14. [14]
    W. A. Syverson, M. J. Fleming, and P. J. Schubring, “The Benefits of SC-1/SC-2 Megasonic Wafer Cleaning,” Proceedings of the Second International Symposium of Cleaning Technology in Semiconductor Device Manufacturing, Vol. 92-12, pp. 1–17, J. Ruzyllo and R. E. Novak, Eds., The Electrochem. Soc., Inc., New Jersey.Google Scholar
  15. [15]
    J. Ruzyllo, “Evaluating the Feasibility of Dry Cleaning of Silicon Wafers,” Microcontamination, 3(3), 39 (1988).Google Scholar
  16. [16]
    T. Ohmuri, T. Fukumoto, and T. Kato, “Ultra Clean Ice Scrubber Cleaning with Jetting Fine Ice Particles,” Proceedings of the First International Symposium on Cleaning Technology in Semiconductor Device Manufacturing, 1989, The Electrochemical Society, 182-191, 90–9 (1990).Google Scholar
  17. [17]
    S. A. H oenig, “Fine Particles on Semiconductor Surfaces: Sources, Removal, and Impact on the Semiconductor Industry,” in Particles on Surfaces, 1: Detection, Adhesion, and Removal, K. L. Mittal, Ed., Plenum Press, New York, pp. 3–16 (1988).Google Scholar
  18. [18]
    W. T. McDermott, R. C. Ockvic, J. J. Wu, and R. J. Miller, “Removing Submicron Surface Particles Using a Cryogenic Argon-Aerosol Technique,” Microcontamination, (10), 33, (1991).Google Scholar
  19. [19]
    J. R. Vig, “UV/Ozone Cleaning of Surfaces,” in Treatise on Clean Surface Technology, Vol. 1, K. L. Mittal, Ed., Plenum Press, New York, pp. 1–26 (1987).CrossRefGoogle Scholar
  20. [20]
    R. Sugino, M. Okuno, M. Shigeno, Y. Sato, A. Ohsawa, T. Ito, and Y. Okui “UV-Excited Dry Cleaning of Silicon Surfaces Contaminated with Iron and Aluminum,” Proc. of the 2nd Intern. Symp. on Cleaning Technology in Semiconductor Device Manufacturing, J. Ryzyllo and R. E. Novak, Eds., Vol. 92-12, pp. 72–79, The Electrochem. Soc., New Jersey, (1992).Google Scholar
  21. [21]
    J. Ruzyllo, D. C. Frystak, and R. A. Bowling, “Dry Cleaning Procedure for Silicon IC Fabrtcation,” IEDM 1990 Technical Digest, 409–412 (1990).Google Scholar
  22. [22]
    A. S. Judge, “A Study of the Dissolution of SiO 2 in Acidic Fluorine Solutions,” J. Electronchem. Soc., 118, 1772 (1971).CrossRefGoogle Scholar
  23. [23]
    A. S. Tenney and M. Ghezzo, “Etch Rates of Doped Oxides in Solutions of Buffered HF,” J. Electrochem. Soc. 120, 1091 (1973).CrossRefGoogle Scholar
  24. [24]
    W. A. Pliskin and R. P. Gnall, “Evidence for Oxidation growth at the Oxide-Silicon Interface from Controlled Etch Studies,” J. Electrochem. Soc. 113, 263 (1966).CrossRefGoogle Scholar
  25. [25]
    A. B. Glaser and G. E. Subak-Sharpe, Integrated Circuit Engineering, Addisson-Wessley, New York, 1979.Google Scholar
  26. [26]
    G. I. Parisi, S. E. Haszko, and G. A. Rozgonyi, “Tapered Windows in SiO 2. The Effect of NH4 F/HF Dilution and Etching Temperature,” J. Electrochem. Soc., 124(6), 917 …Google Scholar
  27. [27]
    H. Robbin and B. Schwartz, “Chemical Etching of Silicon, II. The System HF, HNO3 and H2O,” J. Electrochem. Soc., 106, 505 (1960).CrossRefGoogle Scholar
  28. [28]
    D. L. Kendall, “On Etching Very Narrow Grooves in Silicon,” Appl. Phys. Lett. 26, 195 (1975).CrossRefGoogle Scholar
  29. [29]
    M. Declercq, L. Gerzberg, and J. Meindl, “Optimization of the drazine-Water Solution for Anisotropic Etching of Silicon in Integrated Circuit Technology,” J. Electrochem. Soc., 122(4), 545 (1975).CrossRefGoogle Scholar
  30. [30]
    W. van Gelder and V. E. Hauser, “The Etching of Silicon Nitride in Phosphoric Acid with Silicon Dioxide as a mask,” J. Electrochem. Soc., 124, 869 (1977).Google Scholar
  31. [31]
    A. Deckert, “Pattern Etching of CVD Si4O3/SiO2 Compositions in HF/Glycerol Mixtures,” J. Electrochem. Soc., 127, 2433 (1980).CrossRefGoogle Scholar
  32. [32]
    H. H. Sawin, “A Review of Plasma Processing Fundamentals,” Solid State Technology, 28(4),211–216, (1985).Google Scholar
  33. [33]
    S. J. Fonash “Advances in Dry Etching-A Review,” Solid State Technology, 28(1), 150–158, (1985).Google Scholar
  34. [34]
    D. L. Flamm and G. K. Herb, “Plasma Etching Technology-An Overview,” in Plasma Etching, D. M. Manos and D. L. Flamm, Eds., Academic Press, p. 14, New York (1989).Google Scholar
  35. [35]
    C. J. Mogab, “Dry Etching,” in VLSI Technology, S. M. Sze, Ed., McGraw ill, New York, p. 303 (1983).Google Scholar
  36. [36]
    J. W Coburn, Plasma Etching and Reactive Ion Etching, American Vacuum Society, New York, 1982.Google Scholar
  37. [37]
    H. R. Koenig and L. I. Maissel, “Application of RF Discharges to Sputtering,” IBM J. Res. Dev., 14(1), 168 (1970).CrossRefGoogle Scholar
  38. [38]
    J. L. Vossen and J. J. Cuomo, “Glow Discharge Sputter Deposition,” in Thin Film Processes, J. L. Vossen and W. Kern, Eds., p. 11, Academic Press, New York, 1978.Google Scholar
  39. [39]
    J. W. Coburn and H. F. Winters, “Plasma-Assisted Etching in Microfabrication,” Ann. Rev. Mater. Sci., 13, 91 (1983).CrossRefGoogle Scholar
  40. [40]
    D. T. Hawkins, “Ion Milling (Ion Beam Etching), 1975-1978: A Bibliography,” J. Vac. Sci. Technology, 16, 1051 (1979).MathSciNetCrossRefGoogle Scholar
  41. [41]
    D. Bollinger and R. Fink, “A New Production Technique: Ion Milling,” Solid-State. Technology, 23(11), 79–84 (1980).Google Scholar
  42. [42]
    J. M. E. Harper, “Ion Beam Etching,” in Plasma Etching, D. M. Manos and D. L. Flamm, Eds., p. 391, Academic Press, New York (1989).Google Scholar
  43. [43]
    J. Melngallis, “Focused Ion Beam Technology and Applications,” J. Vac. Sci.Technology. B5(2), 469 (1987).CrossRefGoogle Scholar
  44. [44]
    S. Broydo, “Important Considerations in Selecting Anisotropic Plasma Etching Equipment,” Solid State Technology, — (4), 159 (1983).Google Scholar
  45. [45]
    R. W. Berry, P. M. Hall, M. T. Harris, Thin Film Technology, p. 24, Van Nostrand, New Jersey (1968).Google Scholar
  46. [46]
    F. Daniels and R. A. Alberty, Physical Chemistry, p. 126, John Wiley & Sons, New York (1966)Google Scholar
  47. [47]
    R. C. Weast, Handbook of Chemistry and Physics, p. B–88, The Chemical Rubber Co., Cleveland (1971).Google Scholar
  48. [48]
    S. M. Irving, “A Plasma Oxidation Process for Removing Photoresist Films,” Solid State Technology, 14(6), 47 (1971).Google Scholar
  49. [49]
    G. S. Oehrlein and J. F. Rembetski, “Plasma-Based Dry Etching Techniques in the Silicon Integrated Circuit Technology,” IBM J. Res. Dev., 36(2), 140 (1992).CrossRefGoogle Scholar
  50. [50]
    J. A. Bondur, “Dry Process Technology,” J. Vac. Sci. Technol., 13, 1023 (1976).CrossRefGoogle Scholar
  51. [51]
    J. W. Coburn and H. F. Winters, “Ion-and Electron-Assisted Gas-Surface Chemistry-An Important Effect in Plasma Etching,” J. Appl. Phys. 50(5), 3189–3196 (1979).CrossRefGoogle Scholar
  52. [52]
    H. F. Winters, J. W. Coburn, and T. J. Chuang, “Surface Processes in Plasma-Assited Etching Environments,” J. Vac. Sci. Technol., B1, 469 (1983).Google Scholar
  53. [53]
    J. L. Mauer, J. S. Logan, L. B. Zielinski, and G. C Schwartz, “Mechanism of Silicon Etching by a CF 4 Plasma,” J. Vac. Sci. Technol., 15, 1734 (1978).CrossRefGoogle Scholar
  54. [54]
    D. L. Flamm and V. M. Donnelly, “The Design of Plasma Etchants,” Plasma Chemistry and Plasma Processing, 1(4), 317 (1981).CrossRefGoogle Scholar
  55. [55]
    H. F. Winters and J. W. Coburn, “Etching Reactions at Solid Surfaces,” Mater. Res. Soc. Symp. Proc. 38, 189–200 (1985).CrossRefGoogle Scholar
  56. [56]
    T. J. Tu, T. J. Chuang, and H. F. Winters, “Chemical Sputtering of Fluorina ted Silicon,” Phys. Rev. B, 23, 823–835 (1981).CrossRefGoogle Scholar
  57. [57]
    M. Sato and Y Arita, “Etched Shape Control of Single-Crystal Silicon in Reactive Ion Etching Using Chlorine,” J. Electrochem. Soc., 134(11), 2856–2862 (1987).CrossRefGoogle Scholar
  58. [58]
    R. N. Cariile, V. Liang, A. Palusinski, and M. M. Smadi, “Trench Etches in Silicon with Controllable Sidewall Angles,” J. Electrochem. Soc., 135(8), 2058 (1988).CrossRefGoogle Scholar
  59. [59]
    G. K. Herb, D. J. Rieger, and K. Shields, “Silicon Trench Etch in a Hex Reactor,” Solid State Technology, 30(10), 109–115 (1987).Google Scholar
  60. [60]
    R. A. Powell and D. F. Downey, “Reactive Ion Beam Etching,” in Dry Etching for Microelectronics, R. A. Powell, Ed., North Holland Physics Publishing, p. 115, New York (1984).Google Scholar
  61. [61]
    H. C. Scheer “Ion Sources for Dry Etching: Aspects of Reactive Ion Beam Etching for Si Technology,” Rev. Sci. Instrum. 63(5), pp. 3050 3057 (1992).CrossRefGoogle Scholar
  62. [62]
    D. J. Chirm, I. A. Adesida, and E. D. Wolf, “Profile Formation in CAIBE,” Solid State Technology 27(5), 123–129 (1984).Google Scholar
  63. [63]
    M. Komuro, N. Watanabe, and H. Hiroshima, “Focused Ga Ion Beam Etching of Si in Chlorine Gas,” Jap. J. Appl. Phys., 29(10), 2288–2291 (1990).CrossRefGoogle Scholar
  64. [64]
    J. A. Skidmore, G. D. Spiers, J. H. English, Z. Xu, Prater, L. A. Coldren, E. L. Hu, and P. M. Petroff, “Low Damage Anisotropic Radical-Beam Ion-Beam Etching and Selective Chemical Etching of Focused Ion Beam-Damaged GaAs Substrates,” SPIE, 1671, 268–279 (1992).CrossRefGoogle Scholar
  65. [65]
    P. D. Brewer, G. M Reksten, and R. M. Osgood, Jr., “Laser-Assisted Etching,” Solid State Technology, 28(4), 273–278 (1985).Google Scholar
  66. [66]
    M. Sekine, H. Okano, K. Yamabe, N. Hayaska, and Y. Horrike, “Radiation Damage Evaluation in an Excimer Laser Etching,” Digest VLSI Symposium, p. 82 (1985).Google Scholar
  67. [67]
    J. A. Mucha and D. W. Hess, “Plasma Etching,” in Introduction to Microlithography: Theory, Materials, and Processing, L. F. Thompson, C. G. Willson, and M. J. Bowden, Eds., American Chem. Soc. Symp. Series, 219, 215–285, (1983).Google Scholar
  68. [68]
    Y. Horiike, M. Shibagaki, “A Dry Etching technology Using Long-Lived Active Species Excited by Microwave,” in Semiconductor Silicon, H. R. Huff and E. Sirtl, Eds., The Electrochem. Soc., 77-2, 1071 (1977).Google Scholar
  69. [69]
    C. B. Zarowin and R. S. Horowath, Proceedings of the Third Symposium on Plasma Etching, The Electrochemical Society, Vol 82-6, p. 50 (1982).Google Scholar
  70. [70]
    E. Bogle-Rohwer, D. Gates, L. Hayler, H. Kurasaki, and B. Richardson, “Wall profile Control in a Triode Etcher,” Solid State Technology, 28(4), 251–255 (1985).Google Scholar
  71. [71]
    J. A. Thornton, “Magnetron Sputtering: Basic Physics and Application to Cylindrical Magnetrons,” J. Vac. Sci. Technology, 15(2), 171–177 (1978).CrossRefGoogle Scholar
  72. [72]
    M. Engelhardt, “Evaluation of Dry Etching Processes with Thermal Waves,” Solid State Technology, 33(4), 151–156 (1990).Google Scholar
  73. [73]
    A. A. Bright, S. Kaushik, and G. S. Oehrlein, “Plasma Chemical Aspects of Magnetron Ion Etching with CF 4/O2 J. Appl. Phys., 62(6), 2518–2522 (1987).CrossRefGoogle Scholar
  74. [74]
    G. S. Oerlein, A. A. Bright, and S. W. Robey, “X-Ray Photoemission Spectroscopy Characterization of Silicon Surfaces after CF 4/H2 Magnetron Ion Etching: Comparisons to Reactive Ion Etching,” J. Vac. Sci. Technol, A6(3), 1989–1993 (1988).Google Scholar
  75. [75]
    O. S. Nakawaga, S. Ashok, and J. K. Kruger, “A Schottky Barrier Study of HBr Magnetron Enhanced Reactive Ion Etching Damage in Silicon,” J. Appl. Phys.. 69(4), 2057–2061 (1991).CrossRefGoogle Scholar
  76. [76]
    C. P. D’E rnic, Chan, and J. Blum, “Deep Trench Plasma Etching of Single Crystal Silicon using SF6/O2 Gas Mixtures,” J. Vac. Sci. Technol. B, 10(3), 1105–1110 (1992).CrossRefGoogle Scholar
  77. [77]
    W. Fu, R. Hsu, and V. Malba, “Magnetron Enhanced Reactive Ion Etching of Al 1% Si 2% CAlloy,” Low Energy Ion Beam and Plasma Modification of Materials Symposium Anaheim, California, April/May 1991, pp. 385–388 (1991).Google Scholar
  78. [78]
    M. Sato, D. Takehara, Uda, Sakiyama, and T. Hara, “Suppression of Microloading Effect by Low Temperature SiO2 Etching,” Jap. J. Appl. Phys., Part 1, 31(12B), 4370–4375 (1992).CrossRefGoogle Scholar
  79. [79]
    M. Meyyappan, “Magnetron Reactive Ion Etching of GaAs in SiCl4,” J. Vac. Sci. Technology 10(3), 1215 (1992).CrossRefGoogle Scholar
  80. [80]
    J. Hiyoshi, H. Hamanaka, M. Sasaki, F. Kobayashi, Ukai, and T. Okada, “Damage Formed by Electron Cyclotron Resonance Plasma Etching on a Gallium Arsenide Surface,” J. Appl. Phys. 67(6), 2836–2839 (1989)Google Scholar
  81. [81]
    K. Suzuki, S. Okudaira, N. Sakudo, and I, Kanomata, “Microwave Plasma Etching,” Jap. J. Appl. Phys. 16(11), 1979–1984 (1977)CrossRefGoogle Scholar
  82. [82]
    S. Matsuo, “Selective Etching of Silicon Relative to SiOWithout Undercutting by 2 Without Undercutting by CBrF 3 Plasma,” Appl. Phys. Lett., 36(9), 768–770 (1980).CrossRefGoogle Scholar
  83. [83]
    C. J. Mogab, “The Loading Effect,” J. Electrochem. Soc., 124, 1262 (1977).CrossRefGoogle Scholar
  84. [84]
    P. M. Schaible, W. Metzger, and J. P. Anderson, “Reactive Ion Etching of Aluminum and Aluminum Alloys in an RF Plasma Containing Halogen Species,” J. Vac. Sci. Technol., 15,334–337 (1978).CrossRefGoogle Scholar
  85. [85]
    Y. Horiike and M. Shibagaki, “A New Dry Chemical Etching,” Jpn. J. Appl. Phys., Suppl. 15, 13–18 (1976).Google Scholar
  86. [86]
    D. L. Flamm, “Introduction to Plasma Chemistry,” in Plasma Etching, D. M. Manos and D. L. Flamm, Eds., Academic Press, p.91, New York (1989).Google Scholar
  87. [87]
    T. Enomoto, M. Denda, A. Yasuoka, and H. Nakata, “Loading Effect and Temperature Dependence of Etch Rate in CF4 Plasma,” Jpn. J. Appl. Phys., 18, 155 (1979).CrossRefGoogle Scholar
  88. [88]
    J. Mogab and H. L. Levinstein, “Anisotropic Plasma Etching of Polycrystalline Silicon,” J. Vac. Sci. Technol., 17, 721 (1980).CrossRefGoogle Scholar
  89. [89]
    R. A. Gottscho, W. Jurgensen, and D. J. Vitkavage, “Microscopic Uniformity in Plasma Etching,” J. Vac. Sci. Technol. B, 10(5), 2133–2147 (1992).CrossRefGoogle Scholar
  90. [90]
    N. Fujiwara, H. Sawai, M. Yoneda, K. Nishioka, K. Horie, K. Nakamoto, and H. Abe, “High Performance Electron Cyclotron Resonance Plasma Etching with Control of Magnetic Field Gradient,” Japn. J. Appl. Phys. 1, 30(11B), 3142–3146 (1991).CrossRefGoogle Scholar
  91. [91]
    K. Koller, H. P. Erb, and H. Korner, “Tungsten Plug Formation by an Optimized Tungsten Etch Back Process in Non Fully Planarized Topology,” Appl. Surf. Sci., 53, 54–61 (1991).CrossRefGoogle Scholar
  92. [92]
    D. L. Flamm, V. M. Donnelly, and J. A. Mucha “The Reaction of Fluorine Atoms with Silicon,” J. Appl. Phys., 52(5), 3633–3639 (1981).CrossRefGoogle Scholar
  93. [93]
    A. W. Kolfschotten, R. A. Haring, A. Haring, and A. E. de Vries, “Argon-Ion Assisted Etching of Silicon by Molecular Chlorine,” J. Appl. Phys., 55(10), 3813–3818 (1984).CrossRefGoogle Scholar
  94. [94]
    Y. H. Lee, M. M. Chen, and A. A. Bright, “Doping Effects in Reactive Plasma Etching of Heavily Doped Silicon,” Appl. Phys. Lett., 46(3), 260–262 (1985).CrossRefGoogle Scholar
  95. [95]
    L. Baldi and D. Beardo, “Effect of Doping on Polysilicon Etch Rate in a Fluorine-Containing Plasma,” J. Appl. Phys., 57(6), 2221–2225 (1985).CrossRefGoogle Scholar
  96. [96]
    G. C Schwartz and P. M. Schaible, “Reactive Ion Etching of Silicon,” J. Vac. Sci. Technol., 16(2), 410–413 (1979).CrossRefGoogle Scholar
  97. [97]
    N. Awaya and Y. Arita, Proc. 6th. Symp. on Dry Processes, IEE, Tokyo, pp. 98–103 (1984).Google Scholar
  98. [98]
    S. Berg, Nender, R. Buchta, and H. Norstroem, “Dry Etching of N-and P-Type Polysilicon: Parameters Affecting the Etch Rate,” J. Vac. Sci. Technol., A5(4), 1600–1603 (1987).Google Scholar
  99. [99]
    S. E. Bernacki and B. B. Kisicki, “Controlled Film Formation During CCl 4 Plasma Etching,” J. Electrochem. Soc., 131(8), 1926–1931 (1984).CrossRefGoogle Scholar
  100. [100]
    J. Chung, M. Jeng, J. E. Moon, A.T. Wu, T. Y. Chan, P. K. Ko and C. Hu, “Deep Submicrometer MOS Device Fabrication Using Photoresist Ashing Technique,” IEEE Electron Device Letters, EDL 9(4), 186 (1988).CrossRefGoogle Scholar
  101. [101]
    Dry Etching,” Practical VLSI Fabrication for the 90s, R. Bowman, G. Fry, J. Griffin, R. Potter, and R. Skinner, Eds., Integrated Circuit Engineering Corp., Arizona (1990).Google Scholar
  102. [102]
    Z.-H. Zhou, E. S. Aydil, R. A. Gottscho, Y. J. Chabal, and R.. Reif, “Real-Time, in-situ Monitoring of Room Temperature Silicon Surface Cleaning Using Hydrogen and Ammonia Plasma,” J. Electrochem. Soc., in Press (1993).Google Scholar
  103. [103]
    M. Miki, H. Hikuyama, I. Kawanabe, M. Miyashita, and T. Ohmi, “Gas-Phase Selective Etching of Native Oxide,” IEEE Trans. Electron Devices, ED-37(1), 107 (1990).CrossRefGoogle Scholar
  104. [104]
    B. Witowski, J. Chacon, and V. Menon, “Characterization of an Anhydrous HF Pre Gate Oxidation Etching Process,” in Cleaning Technology in Semiconductor Manufacturing, J. Ruzyllo and R. E. Novak, Eds., p. 372, Electronchem Soc., Vol. 92 12, New JerseyGoogle Scholar
  105. [105]
    C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma Etching of Si and SiO 2-The Effect of Oxygen Additions to a CF 4 Plasma,” J. Appl. Phys., 49, 3769 (1978).CrossRefGoogle Scholar
  106. [106]
    L. M. Ephrath, “Selective Etching of Silicon Dioxide Using Reactive Ion Etching with CF 4/H2,” J. Electrochem. Soc., 126, 1419 (1979).CrossRefGoogle Scholar
  107. [107]
    K. Hirata, Y. Ozaki, M. Oda, and M. Kimizuka, “Dry Etching Technology for 1-μm VLSI Fabrication,” IEEE Trans. Electron Dev., ED-28, 1323 (1981).CrossRefGoogle Scholar
  108. [108]
    M. Delfino, S. Salimian, D. Hodul, A. Ellingboe, and W. Tsai, “Plasma Cleaned Si Analyzed in situ by X-Ray Photoelectron Spectroscopy, and Actinometry,” J. Appl. Phys., 71(2), 1001–1009 (1992).CrossRefGoogle Scholar
  109. [109]
    P. E. Riley, S. S. Peng, and L. Fang, “Plasma Etching of Aluminum for VLSI,” Solid State Technology, 47–52(1993).Google Scholar
  110. [110]
    D. W. Hess and R. H. Bruce, “Plasma-Assisted Etching of Aluminum and Aluminum Alloys,” in Dry Etching for Microelectronics, R. A. Powell, Ed., North Holland Physics Publishing, p. 115, New York (1984).Google Scholar
  111. [111]
    N. Selamoglu, C. N. Bredbenner, T. A. Giniecki, and H. J. Stocker, “Tapered Etching of Aluminum with CHF 4/BCl3 and its Impact on Step Coverage of Plasma-Deposited Silicon Oxide from Tetraethoxysilane,” J. Vac. Sci. technol., B9(5), 2530–2535 (1991).Google Scholar
  112. [112]
    T. J. Dalton, W. T. Conner, and H. H. Sawin, “Interferometric Real-Time Measurement of Uniformity from Plasma Etching,” J. Appl. Phys., submitted (1993).Google Scholar
  113. [113]
    K. Shenai, “Diffusion Profiles of Boron Implanted into Plasma-Etched Silicon Surfaces,” IEEE Trans. Electron Devices, ED-39(5), 1242–1245 (1992).CrossRefGoogle Scholar
  114. [114]
    S. W. Pang, D. D. Rathman, D. J. Silversmith, R. W. Mountain, and P. D. DeGraff, “Damage Induced in Si by Ion Milling or Reactive Ion Etching,” J. Appl. Phys., 54(6), 3272–3277 (1983).CrossRefGoogle Scholar
  115. [115]
    L. J. Brillson, M. L. Slade, A. D. Kadnani, M. Kelly, and G. Margaritondo, “Reduction of Silicon-Aluminum Interdiffusion by Improved Semiconductor Surface Ordering,” Appl. Phys. Lett, 44(1), 110–112 (1984).CrossRefGoogle Scholar
  116. [116]
    L. Jen Chung and W. G. Oldham, “Plasma Etch Effects on Low Temperature Selective Epitaxial Growth of Silicon,” J. Appl. Phys., 71(7), 3225 30 (1992).CrossRefGoogle Scholar
  117. [117]
    C.T. Gabriel and J. P. McVittie, “How Plasma Etching Damages Thin Gate Oxides,” Solid State Technology, 35(6), 81–87 (1992).Google Scholar
  118. [118]
    M. Kubota, K. Hatafuji, A. Misaka, A. Yamano, H. Nakagawa, and N. Nomura, “Simulational Study for Gate Oxide Breakdown Mechanism due to Non-Uniform Electron Current Flow,” IEDM 1991 Tech. Digest, p. 891 (1991).Google Scholar
  119. [119]
    H. Shin, C.-C. King, T. Horiuchi, and C. Hu, “Thin Oxide Charging Current During Plasma Etching of Aluminum,” IEEE Electron Dev. Lett, 12(8), 404 (1991).CrossRefGoogle Scholar
  120. [120]
    S. Fang, A. M. McCarthy, and J. P. McVittie, “Charge Sharing Antenna Effects for Gate Oxide Damage During Plasma Processing,” Proc. 3rd Intl. Symp. on ULSI, Electrochem. Soc., Pennington, New Jersey, Vol. 91-11(5), p. 473 (1991).Google Scholar
  121. [121]
    R. A. Bowling, “An Analysis of Particle Adhesion on Semiconductor Surfaces,” J. Electrochem. Soc., 132(9), 2208–2214 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Badih El-Kareh
    • 1
  1. 1.IBM CorporationUSA

Personalised recommendations