Advertisement

Abstract

The general objective of the branch of rheology called rheometey is the definition of the rheological behavior of a given fluid under given flow conditions through the experimental measurement of macroscopic quantities using suitable instruments. The rheometer data may be essential in the formulation of constitutive equations, in other words, to assist in the determination of the relationships between the tensorial components of the shear stress τij; and of the shear rate Ý ij . These relations are generally dependent on Ý ij and also on the previous rheological history experienced by the fluid under investigation, so that the more extended is the experimental plan, the more accurate will be the definition of the rheological model. Accordingly, also the solution of real flow problems, through the combination of the rheological equation of state with the equations of motion and continuity, will also be more precise.

Keywords

Shear Rate Newtonian Fluid Secondary Flow Normal Stress Difference Extensional Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faxén, H., Arkiv. Mat. Astron. Fyzik,1922–23, 17, 1.Google Scholar
  2. 2.
    Brenner, H., Graham, A.L., Abbott, J.R and Mondy, L.A., Int. J. Multiphase Flow,1990, 16, 579.CrossRefGoogle Scholar
  3. 3.
    Mitschka, P., Rheol. Acta, 1982, 21, 207.CrossRefGoogle Scholar
  4. 4.
    Wichterle, K. and Mitschka, P., Rheol. Acta, 1986, 25, 331.CrossRefGoogle Scholar
  5. 5.
    Metzner, A.B., Non-Newtonian Technology,Academic Press, New York, 1956.Google Scholar
  6. 6.
    Cannon, M.R., Manning, RE. and Bell, J.D., Anal. Chem., 1960, 32, 355.CrossRefGoogle Scholar
  7. 7.
    Bagley, E.B., J. Appl. Phys., 1957, 28, 624.CrossRefGoogle Scholar
  8. 8.
    Metzner, A.B. and Reed, J.C., AIChE Journal, 1955, 1, 434.CrossRefGoogle Scholar
  9. 9.
    Ryan, N.W. and Johnson, M.M., AIChE Journal, 1959, 5, 433.CrossRefGoogle Scholar
  10. 10.
    . Pipkin, A.C., Quart. Appl. Math., 1968, 26, 87.Google Scholar
  11. 11.
    Krieger, I.M. and Elrod, H., J. Appl. Phys., 1953, 24, 134.CrossRefGoogle Scholar
  12. 12.
    von Pawlowski, J., Kolloid Z., 1930, 130, 129.CrossRefGoogle Scholar
  13. 13.
    Coleman, B.D., Markovitz, H. and Noll, W., Viscometric Flows of Non-Newtonian Fluids, Springer Verlag, Berlin, 1966.CrossRefGoogle Scholar
  14. 14.
    Yang, T.M.T. and Krieger, I.M., J. Rheol., 1978, 22, 413.CrossRefGoogle Scholar
  15. 15.
    Krieger, I.M., Trans. Soc. Rheol., 1968, 12, 5.CrossRefGoogle Scholar
  16. 16.
    Krieger, I.M., Proc. Vth Int. Congr. on Rheol., ed. S. Onogi, University of Tokyo Press, Tokyo, 1969, vol. I, pp. 511.Google Scholar
  17. 17.
    Tanner, RI. and Williams, G., Trans. Soc. Rheol., 1970, 14, 19.CrossRefGoogle Scholar
  18. 18.
    MacSporran, W.C., J. Rheol., 1986, 30, 125.CrossRefGoogle Scholar
  19. 19.
    MacSporran, W.C., J. Rheol., 1989, 33, 745.CrossRefGoogle Scholar
  20. 20.
    Turian, R.M., Ind. Eng. Chem. Fund.,1972, 11, 361.CrossRefGoogle Scholar
  21. 21.
    Walters, K. and Waters, N.D., In Polymer Systems: Deformation and Flow, eds. RE. Wetton and R.W. Whorlow, Mac Milian Press, London, 1968, pp. 211–35.Google Scholar
  22. 22.
    Kulicke, W.M., Kiss, G. and Porter, RS., Rheol. Acta, 1977, 19, 568.CrossRefGoogle Scholar
  23. 23.
    Giesekus, H.W., Rheol. Acta, 1965, 4, 85.CrossRefGoogle Scholar
  24. 24.
    Giesekus, H.W., Rheol. Acta, 1967, 6, 339.CrossRefGoogle Scholar
  25. 25.
    Griffiths, D.F. and Walters, K., J. FluidMech., 1970, 42, 377.Google Scholar
  26. 26.
    Hoppmann, W.H. and Baronet, C.N., Trans. Soc. Rheol., 1965, 9, 417.CrossRefGoogle Scholar
  27. 27.
    Savins, J.G. and Metzner, A.B., Rheol. Acta, 1970, 9, 365.CrossRefGoogle Scholar
  28. 28.
    Hayes, J.W. and Hutton, J.F., Rheol. Acta, 1972, 11, 89.CrossRefGoogle Scholar
  29. 29.
    Goddard, J.D. and Miller, C., Rheol. Acta, 1966, 5, 177.CrossRefGoogle Scholar
  30. 30.
    Schlichting, H., Boundary Layer Theory,Mac Graw Hill, New York, 1968.Google Scholar
  31. 31.
    Drazin, P.G. and Reid, W.H., Hydrodynamic Stability,Cambridge University Press, Cambridge, 1984.Google Scholar
  32. 32.
    Taylor, G.I., Proc. Roy. Soc., 1936, A157, 546.Google Scholar
  33. 33.
    Adams, N. and Lodge, A.S., Phil. Trans. Roy. Soc., 1964, 256, 149.CrossRefGoogle Scholar
  34. 34.
    Tanner, RI., Trans. Soc. Rheol., 1970, 14, 483.CrossRefGoogle Scholar
  35. 35.
    Griffiths, D.F., Jones, D.T. and Walters, K., J. Fluid. Mech., 1969, 36, 161.CrossRefGoogle Scholar
  36. 36.
    Kaye, A., Lodge, A.S. and Vale, D.G., Rheol. Acta, 1968, 7, 368.CrossRefGoogle Scholar
  37. 37.
    Olabisi, O. and Williams, M.C., Trans. Soc. Rheol., 1972, 16, 727.CrossRefGoogle Scholar
  38. 38.
    Miller, M.J., Ph. D. Thesis, University of Utah, Salt Lake City, 1968.Google Scholar
  39. 39.
    Oka, S., In Rheology: Theory and Applications, ed. F.R. Eirich, Academic Press, New York, vol. 3, 1960.Google Scholar
  40. 40.
    Lindsley, C.H. and Fisher, E.K., J. Appl. Phys., 1947, 18, 988.CrossRefGoogle Scholar
  41. 41.
    Mooney, M. and Ewart, R.H., Physics, 1934, 5, 50.CrossRefGoogle Scholar
  42. 42.
    Moore, F. and Davis, L.J., Trans. Brit. Ceram. Soc., 1956, 55, 313.Google Scholar
  43. 43.
    Gilinson, P.J., Dauwalter, C.R. and Merrill, E.W., Trans. Soc. Rheol., 1963, 7, 319.CrossRefGoogle Scholar
  44. 44.
    Boger, D.V. and Rama Murthy, A.V., Trans. Soc. Rheol., 1969, 13, 405.CrossRefGoogle Scholar
  45. 45.
    Hutton, J.F., Nature, 1963, 200, 646; Proc. Roy. Soc., 1965, A287, 222; Rheol. Acta, 1969, 8, 54.CrossRefGoogle Scholar
  46. 46.
    Galvin, P.T. and Whorlow, R.W., J. Appl. Poym. Sci., 1975, 19, 567.CrossRefGoogle Scholar
  47. 47.
    Bird, RB. and Turian, RM., Chem. Eng. Sci., 1962, 17, 331.CrossRefGoogle Scholar
  48. 48.
    Turian, R.M. and Bird, RB., Chem. Eng. Sci., 1963, 18, 689.CrossRefGoogle Scholar
  49. 49.
    Greensmith, H.W. and Rivlin, R.S., Phil. Trans. Roy. Soc., 1953, 245, 399.CrossRefGoogle Scholar
  50. 50.
    Cheng, D.C.-H. and Davis, J.B., Report LR42 (CE), Warren Spring Lab., Stevenage, U.K., 1966.Google Scholar
  51. 51.
    Ginn, R.F. and Metzner, A.B., Proc. 4th Int. Congr. on Rheology, Interscience, part 2, 1965;, Trans. Soc. Rheol., 1969, 13, 429.Google Scholar
  52. 52.
    Walters, K., Rheometry, Chapman & Hall, London, 1975.Google Scholar
  53. 53.
    Marin, G., In Rheological Measurement, eds. A.A. Collyer and D.W. Clegg, Elsevier Applied Science, London, 1988, pp. 297–343.Google Scholar
  54. 54.
    Whorlow, RW., Rheological Techniques,Ellis Horwood Ltd., Chichester, 1980.Google Scholar
  55. 55.
    Gent, A.N., Brit. J. Appl. Phys., 1960, 11, 165.Google Scholar
  56. 56.
    Maxwell, B. and Chartoff, R.P., Trans. Soc. Rheol., 1965, 9, 41.CrossRefGoogle Scholar
  57. 57.
    Képès, A., unpublished paper presented at 5th Int. Congr. on Rheol., Kyoto, 1968.Google Scholar
  58. 58.
    Kaeble, D.H., J. Appl. Polym. Sci., 1969, 13, 2547.Google Scholar
  59. 59.
    Giacomin, A.J. and Dealy, J.M., In Techniques in Rheological Measurements, ed. A.A. Collier, Springer Science+Business Media Dordrecht, London, 1993, pp. 99–121.CrossRefGoogle Scholar
  60. 60.
    Agrawal, P.K., Lee, W.-K., Lorntson, J.M., Richardson, C.I., Wissbrun, K.F. and Metzner, A.B., Trans. Soc. Rheol., 1977, 21, 355.CrossRefGoogle Scholar
  61. 61.
    Cogswell, F.N., Plast. and Polym., 1968, 36, 109.Google Scholar
  62. 62.
    Munstedt, H., Rheol. Acta, 1975, 14, 1077.Google Scholar
  63. 63.
    Meissner, J., Raible, T. and Stephenson, S.E., J. Rheol., 1981, 25, 1.CrossRefGoogle Scholar
  64. 64.
    Vv. Aa., J. Non-Newtonian FluidMech., 1988, 30, 97–368.CrossRefGoogle Scholar
  65. 65.
    Vv. Aa.., J. Non-Newtonian FluidMech., 1990, 35, 85–470.CrossRefGoogle Scholar
  66. 66.
    James, D.F. and Walters, K., In Techniques in Rheological Measurements, ed. A.A. Collier, Springer Science+Business Media Dordrecht, London, 1993, pp. 33–53.CrossRefGoogle Scholar
  67. 67.
    Hudson, N. and Ferguson, J. Trans. Soc. Rheol., 1976, 20, 265.CrossRefGoogle Scholar
  68. 68.
    Gupta, RK. and Sridhar, T., In Advances in Rheology, vol. 4: Applications, eds. B. Mena, A. Garcia Rejon and C. Rangel-Nafaile, Universidad Nacional Autonoma de Mexico, Mexico, 1984, 71.Google Scholar
  69. 69.
    Ferguson, J. and Missaghi, K., J. Non-Newtonian Fluid Mech., 1982, 11, 269.CrossRefGoogle Scholar
  70. 70.
    Ferguson, J. and Hudson, N.E., J. Phys. E., 1975, 8, 526.CrossRefGoogle Scholar
  71. 71.
    Hudson, N.E. and Ferguson, J., Trans. Soc. Rheol., 1976, 20, 265.CrossRefGoogle Scholar
  72. 72.
    Fano, G., Arch. Fisiol., 1908, 5, 365.Google Scholar
  73. 73.
    Binding, D.M., In Techniques in Rheological Measurements, ed. A.A. Collier, Springer Science+Business Media Dordrecht, London, 1993, pp. 1–32.CrossRefGoogle Scholar
  74. 74.
    James, D.F., Chandler, G.M. and Armour, S.J., J. Non-Newtonian Fluid Mech., 1990, 35, 421.CrossRefGoogle Scholar
  75. 75.
    Baker, F.S., Carter, RE. and Privett, G.J., In Rheological Measurement, eds. A.A. Collyer and D.W. Clegg, Elsevier Applied Science, London, 1988, pp. 151–188.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Romano Lapasin
    • 1
  • Sabrina Pricl
    • 1
  1. 1.Department of Chemical, Environmental and Raw Materials EngineeringUniversity of TriesteItaly

Personalised recommendations