Advertisement

Instrumental methods of meat flavour analysis

  • A. J. Macleod

Abstract

In any flavour analysis, once a valid sample has been obtained the problem can be stated quite simply: (1) to separate the mixture into its individual components, and (2) to identify and quantify the separated components. Ideally, the aroma contributions of the constituents should also be assessed, but this is not entirely within the scope of instrumental analysis, and so will not be considered here.

Keywords

Capillary Zone Electrophoresis Collisionally Activate Dissociation Capsicum Oleoresin Field Desorption Mass Spectrometry Tandem Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamczyk, B., Gennit, W. and Boon, J.J. (1987). A simple approach to the dynamic head-space analysis of volatile flavours using a gas chromatography-photoionization mass spectrometer. Biomed. Environ. Mass Spectrom., 161, 373–375.Google Scholar
  2. Baloga, D.W., Reineccius, G.A. and Miller, J.W. (1990). Characterization of ham flavor using an atomic emission detector. J. Agric. Food Chem., 38, 2021–2026.CrossRefGoogle Scholar
  3. Bricout, J. (1987). Characterization of natural constituents of fruit by enantioselective gas chromatography. In Flavour Science and Technology, ed. M. Martens, G.A. Dalen and H. Russwurm Jr. Wiley, Chichester, pp. 187–194.Google Scholar
  4. Bruins, A.P. (1979). Negative ion chemical ionization mass spectrometry in the determination of components in essential oils. Anal Chem., 51, 967–972.CrossRefGoogle Scholar
  5. Bruins, A.P. (1985). GC/MS employed with chemical ionisation sources for studies of positive and negative ions. In Proc. 10th Int. Mass Spectrometry Conference, Swansea.Google Scholar
  6. Busch, K.L. and Kroha, K.J. (1985). Tandem mass spectrometry applied to the characterization of flavor compounds. In Characterization and Measurement of Flavor Compounds, ed. D.D. Bills and C.J. Mussinan. American Chemical Society, Washington, DC, pp. 121–137.CrossRefGoogle Scholar
  7. Caprioli, R.M., Moore, W.T., Martin, M., DaGue, B.B., Wilson, K. and Moring, S. (1989). Coupling capillary zone electrophoresis and continuous-flow fast atom bombardment mass spectrometry for the analysis of peptide mixtures. J. Chromatogr., 480, 247–257.CrossRefGoogle Scholar
  8. Croasmun, W.R. and McGorrin, R.J. (1989). Gas chromatography-matrix isolation infrared spectroscopy-mass spectrometry for analysis of thermally generated aroma compounds. In Thermal Generation of Aromas, ed. T.H. Parliment, R.J. McGorrin and C.-T. Ho. American Chemical Society, Washington, DC, pp. 61–72.CrossRefGoogle Scholar
  9. Davis, D.V. and Cooks, R.G. (1982). Direct characterisation of nutmeg constituents by mass spectrometry-mass spectrometry. J. Agric. Food Chem., 30, 495–504.CrossRefGoogle Scholar
  10. Eberhardt, R., Woidich, H. and Pfannhauser, W. (1981). Analysis of natural and artificial coconut flavouring in beverages. In Flavour ’81, ed. P. Schreier. de Gruyter, Berlin, pp. 377–383.Google Scholar
  11. Engel, K.-H. (1988). Investigation of chiral compounds in biological systems by chromatographic micromethods. In Bioflavour ’87, ed. P. Schreier. de Gruyter, Berlin, pp. 75–88.Google Scholar
  12. Fehl, A.J. and Marcott, C. (1989). Capillary gas chromatography/Fourier transform infrared spectroscopy using an injector/trap and liquid-liquid extraction. Anal. Chem., 61, 1596– 1598.CrossRefGoogle Scholar
  13. Fields, R.E. and White, R.L. (1987). Real-time library search of vapor-phase spectra for gas chromatography/Fourier transform infrared spectrometry eluents. Anal. Chem., 59, 2709– 2716.CrossRefGoogle Scholar
  14. Fischboeck, G., Pfannhauser, W. and Kellner, R. (1987). Characterization of citrus and kiwi flavors and their degradation processes by combination of GC/FTIR and GC/MS. Mikro-chim. Acta, 1, 27–30.Google Scholar
  15. Fishboeck, G., Pfannhauser, W. and Kellner, R. (1988). GC/FTIR as a powerful tool for the characterization of flavor components in kiwi. Mikrochim. Acta, 3, 249–257.CrossRefGoogle Scholar
  16. Flament, I. and Chevallier, C. (1988). Analysis of volatile constituents of coffee aroma. Chem. Ind., 592–596.Google Scholar
  17. Flament, I., Chevallier, C. and Keller, U. (1987). Extraction and chromatography of food constituents with supercritical CO2. In Flavour Science and Technology, ed. M. Martens, G.A. Dalen and H. Russwurm Jr. Wiley, Chichester, pp. 151–163.Google Scholar
  18. Fraisse, D., Maquin, F., Stahl, D., Suon, K. and Tabet, J.C. (1984). Analyse d’extraits de vanille. Analusis, 12, 63–71.Google Scholar
  19. Games, D.E., Alcock, N.J., van der Greef, J., Nyssen, L.M., Maarse, H. and ten Noever de Brauw, M.C. (1984). Analysis of pepper and capsicum oleoresins by high performance liquid chromatography/mass spectrometry and field desorption mass spectrometry. J. Chromatgr., 294, 269–279.CrossRefGoogle Scholar
  20. Garcia-Regueiro, J.A. and Diaz, I. (1989). Evaluation of the contribution of skatole, indole, androstenone and androstenols to boar-taint in back fat of pigs by HPLC and capillary gas chromatography. Meat Sci., 25, 307–316.CrossRefGoogle Scholar
  21. George, G. (1984). The negative ion technique in mass spectrometry. Application to problems of aroma. Labo-Pharma-Probl. Tech., 343, 479–481.Google Scholar
  22. Guntert, M., Emberger, R., Hopp, R., Kopsel, M., Silberzahn, W. and Werkhoff, P. (1990). Chiral analysis in flavor and essential oil chemistry. Part A. Filbertone-the character impact compound of hazel-nuts. In Flavour Science and Technology, ed. Y. Bessiere and A.F. Thomas. Wiley, Chichester, pp. 29–32.Google Scholar
  23. Hartman, T.G., Ho, C.-T., Rosen, J.D. and Rosen, R.T. (1989). Modern techniques in mass spectrometry for the analysis of nonvolatile or thermally labile flavor compounds. In Thermal Generation of Aromas, ed. T.H. Parliment, R.J. McGorrin and C.-T. Ho. American Chemical Society, Washington, DC, pp. 73–92.CrossRefGoogle Scholar
  24. Hellgeth, J.W., Jordan, J.W., Taylor, L.T. and Khorassani, M.A. (1986). Supercritical fluid chromatography of free fatty acids with on-line FTIR detection. J. Chromatogr. Sci., 24, 183–188.Google Scholar
  25. Hendriks, H. and Bruins, A.P. (1980). Study of three types of essential oil of Valeriana officinalis L. s.1. by combined gas chromatography-negative ion chemical ionization mass spectrometry. J. Chromatogr., 190, 321–330.CrossRefGoogle Scholar
  26. Hendriks, H. and Bruins, A.P. (1983). A tentative identification of components in the essential oil of Cannabis sativa L. by a combination of gas chromatography negative ion chemical ionization mass spectrometry and retention indices. Biomed. Mass Spectrom., 10, 377–381.CrossRefGoogle Scholar
  27. Hener, U., Hollnagel, A., Kreis, P., Maas, B., Schmarr, H.-G., Schubert, V., Rettinger, K., Weber, B. and Mosandl, A. (1990). Direct enantiomer separation of chiral volatiles from complex matrices by multidimensional gas chromatography. In Flavour Science and Technology, ed. Y. Bessiere and A.F. Thomas. Wiley, Chichester, pp. 25–28.Google Scholar
  28. Herres, W. (1984). Capillary GC-FTIR analysis of volatiles: HRGC-FTIR. In Analysis of Volatiles, ed. P. Schreier. de Gruyter, Berlin, pp. 183–217.Google Scholar
  29. Herres, W., Idstein, H. and Schreier, P. (1983). Flavor analysis by HRGC/FT-IR cherimoya (Annona cherimolia, Mill.) fruit volatiles. J. High Resolut. Chromatogr., 6, 590– 594.CrossRefGoogle Scholar
  30. Hirvi, T. and Honkanen, E. (1983). Application of the mass fragmentographic SIM technique to the analysis of volatile compounds of berries, especially of genera Vaccinium and Fragaria. In Instrumental Analysis of Food, Vol. 1, ed. G. Charalambous and G. Inglett. Academic Press, New York, pp. 85–97.Google Scholar
  31. Hirvi, T. and Honkanen, E. (1984). Selected ion monitoring technique and sensory analysis in the evaluation of the aroma of berries. In Proc. Alko. Symp. on Flavour Research of Alcoholic Beverages, ed. L. Nykanen and P. Lehtonen. Foundation for Biotechnical and Industrial Fermentation Research, pp. 275–278.Google Scholar
  32. Homatidou, V., Karvouni, S. and Dourtoglou, V. (1990). Determination of characteristic aroma components of ’Cantaloupe’ Cucumis melo using multidimensional gas chromatography (MDGC). In Flavors and Off-Flavors, ed. G. Charalambous. Elsevier, Amsterdam, pp. 1011–1023.Google Scholar
  33. Idstein, H. and Schreier, P. (1985a). Volatile constituents from guava (Psidium guajava L.) fruit. J. Agric. Food Chem., 33, 138–143.CrossRefGoogle Scholar
  34. Idstein, H. and Schreier, P. (1985b). High-resolution gas chromatography-Fourier transform IR spectroscopy in flavor analysis. In Characterization and Measurement of Flavor Compounds, ed. D.D. Bills and C.J. Mussinan. American Chemical Society, Washington, pp. 109–120.Google Scholar
  35. Idstein, H., Herres, W. and Schreier, P. (1984). High resolution gas chromatography-mass spectrometry and Fourier transform-infrared analysis of cherimoya (Annona cherimolia, Mill.) volatiles. J. Agric. Food Chem., 32, 383–389.CrossRefGoogle Scholar
  36. Kempfert, K.D. (1990). Analysis of aroma compounds by combined GC-FTIR. Lebensm.-Biotechnol, 7, 132–133.Google Scholar
  37. Krammer, G., Frohlich, O. and Schreier, P. (1988). Chirality evaluation of 1,4-deca-and 1,4-dodecanolide in strawberry. In Bioflavour ’87, ed. P. Schreier. de Gruyter, Berlin, pp. 89–95.Google Scholar
  38. Labows, J.N. and Shushan, B. (1983). Direct analysis of food aromas. Amer. Lab., 15, 56–61.Google Scholar
  39. Lange, G. and Schultze, W. (1988a). Studies on terpenoid and non-terpenoid esters using chemical ionization mass spectrometry in GC/MS coupling. In Bioflavour ’87, ed. P. Schreier. de Gruyter, Berlin, pp. 105–114.Google Scholar
  40. Lange, G. and Schultze, W. (1988b). Differentiation of isopulegol isomers by chemical ionization mass spectrometry. In Bioflavour ’87, ed. P. Schreier. de Gruyter, Berlin, pp. 115– 122.Google Scholar
  41. Le Quere, J.L., Samon, E., Latrasse, A. and Etievant, P. (1987). Gas chromatography-Fourier transform infrared spectrometry. Applications in flavor analysis. Sci. Aliments, 7, 93–109.Google Scholar
  42. Liddle, P.A.P. and Bossard, A. (1984). Volatile naturally occurring restricted compounds derived from flavouring and their determination in food and beverages. In Progress in Flavour Research, ed. J. Adda. Elsevier, Amsterdam, pp. 467–476.Google Scholar
  43. McLafferty, F.W. and Bockoff, F.M. (1978). Separation/identification system for complex mixtures using mass separation and mass spectral characterisation. Anal. Chem., 50, 69–76.CrossRefGoogle Scholar
  44. Morin, P., Caude, M., Richard, H. and Rosset, R. (1986). Carbon dioxide supercritical fluid chromatography-Fourier transform infrared spectrometry. Chromatographia, 21, 523–530.CrossRefGoogle Scholar
  45. Morin, P., Caude, M., Richard, H. and Rosset, R. (1987). Supercritical fluid chromatography-Fourier transform infrared spectrometry coupling applied to polycyclic aromatic and sesquiterpene hydrocarbon analysis. Analusis, 15, 117–127.Google Scholar
  46. Morin, P., Caude, M., Richard, H. and Rosset, R. (1987) On-line carbon dioxide SFC-FTIR in aroma research. Perspectives and limits. In Flavour Science and Technology, ed. M. Martens, G.A. Dalen and H. Russwurm Jr. Wiley, Chichester, pp. 165–174.Google Scholar
  47. Mosandl, A., Hener, U., Schmarr, H.G. and Rautenschlein, M. (1990). Chirospecific flavor analysis by means of enantioselective gas chromatography, coupled on-line with isotope ratio mass spectrometry. J. High Resolut. Chromatogr., 13, 528–531.CrossRefGoogle Scholar
  48. Moseley, M.A., Deterding, L.J., Tomer, K.B. and Jorgenson, J.W. (1989). Coupling of capillary zone electrophoresis and capillary liquid chromatography with coaxial continuous-flow fast atom bombardment tandem sector mass spectrometry. J. Chromatogr., 480, 197–209.CrossRefGoogle Scholar
  49. Nitz, S. (1985). Multidimensional gas-chromatography in aroma research. In Topics in Flavour Research, ed. R.G. Berger, S. Nitz and P. Schreier. Eichhorn, Marzling-Hangen-ham, pp. 43–57.Google Scholar
  50. Nitz, S. and Julich, E. (1984). Concentration and GC-MS analysis of trace volatiles by sorption-desorption techniques. InAnalysis of Volatiles, ed. P. Schreier. de Gruyter, Berlin, pp. 151–170.Google Scholar
  51. Nitz, S., Kollmannsberger, H. and Drawert, F. (1988). Analysis of flavours by means of combined cryogenic headspace enrichment and multimensional GC. In Bioflavour ’87, ed. P. Schreier, de Gruyter, Berlin, pp. 123–135.Google Scholar
  52. Nykanen, L., Savolahti, P. and Nykanen, I. (1985). First experiences with HR-GC-FT-IR analysis of flavour compounds in distilled alcoholic beverages. In Topics in Flavour Research, ed. R.G. Berger, S. Nitz and P. Schreier. Eichhorn, Marzling-Hangenham, pp. 109–123.Google Scholar
  53. Olivares, J.A., Nguyen, N.T., Yonker, C.R. and Smith, R.D. (1987). On-line mass spectro-metric detection for capillary zone electrophoresis. Anal. Chem., 59, 1230–1232.CrossRefGoogle Scholar
  54. Pfannhauser, W., Kellner, R. and Fischboeck, G. (1990). GC/FTIR and GC/MS analysis of kiwi flavors. In Flavors and Off-Flavors, ed. G. Charalambous. Elsevier, Amsterdam, pp. 357–373.Google Scholar
  55. Purcell, J.M. and Magidman, P. (1984). Analysis of the aroma of intact fruit of Coffea arabica by GC-FT-IR. Appl. Spectrosc., 38, 181–184.CrossRefGoogle Scholar
  56. Schomburg, G., Husmann, H., Podmaniczky, L. and Weeke, F. (1984). Coupled gas chromatographic methods for separation, identification and quantitative analysis of complex mixtures: MDGC, GC-MS, GC-IR, LC-GC. In Analysis of Volatiles, ed. P. Schreier. de Gruyter, Berlin, pp. 121–150.Google Scholar
  57. Schreier, P. and Idstein, H. (1984). The use of HRGC-FTIR in tropical fruit flavour analysis. In Analysis of Volatiles, ed. P. Schreier. de Gruyter, Berlin, pp. 293–306.CrossRefGoogle Scholar
  58. Schreier, P. and Idstein, H. (1985a). Advances in the instrumental analysis of food flavours. Z. Lebensm.-Unters. Forsch., 180, 1–14.CrossRefGoogle Scholar
  59. Schreier, P. and Idstein, H. (1985b). High-resolution gas chromatography-Fourier transform infrared spectroscopy in flavor analysis. Z. Lebensm.-Unters. Forsch., 181, 183–188.CrossRefGoogle Scholar
  60. Schurig, V. (1988). Enantiomer separation by complexation gas chromatography-applications in chiral analysis of pheromones and flavours. In Bioflavour ’87, ed. P. Schreier. de Gruyter, Berlin, pp. 35–54.Google Scholar
  61. Skelton, R.J., Johnson, C.C. and Taylor, L.T. (1986). Sampling considerations in supercritical fluid chromatography. Chromatographia, 21, 3–8.CrossRefGoogle Scholar
  62. Smith, R.D., Olivares, J.A., Nguyen, N.T. and Udseth, H.R. (1988a). Capillary zone electro-phoresis-mass spectrometry using an electrospray ionization interface. Anal. Chem., 60, 436–441.CrossRefGoogle Scholar
  63. Smith, R.D., Baringa, C.J. and Udseth, H.R. (1988b). Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry. Anal. Chem., 60, 1948– 1952.CrossRefGoogle Scholar
  64. ten Noever de Brauw, M.C. and van Ingen, C. (1981). Mass spectrometry. In Isolation, Separation and Identification of Volatile Compounds in Aroma Research, ed. H. Maarse and R. Belz. Akademie-Verlag, Berlin, pp. 155–225.Google Scholar
  65. Thomas, A.F., Wilhalm, B. and Flament, I. (1984). Some aspects of GC-MS in the analysis of volatile flavours. In Chromatography and Mass Spectrometry in Nutrition Science and Food Safety, ed. A. Frigerio and H. Milon. Elsevier, Amsterdam, pp. 47–65.Google Scholar
  66. Tomlinson, A.J. (1991). Analysis of the coloured products of the Maillard reaction. PhD thesis, London University, London.Google Scholar
  67. Tressl, R., Engel, K.-H., Albrecht, W. and Bille-Abdullah, H. (1985a). Analysis of chiral aroma components in trace amounts. In Characterization and Measurement of Flavor Compounds, ed. D.D. Bills and C.J. Mussinan. American Chemical Society, Washington, pp. 43–60.CrossRefGoogle Scholar
  68. Tressl, R., Grunewald, K.G., Kersten, E. and Rewicki, D. (1985b). Formation of pyrroles and tetrahydroindolizin-6-ones as hydroxyproline-specific Maillard products from glucose and rhamnose. J. Agric. Food Chem., 33, 1137–1142.CrossRefGoogle Scholar
  69. Tressl, R., Grunewald, K.G., Kersten, E. and Rewicki, D. (1986). Formation of pyrroles and tetrahydroindolizin-6-ones as hydroxyproline-specific Maillard products from erythrose and arabinose. J. Agric. Food Chem., 34, 347–350.CrossRefGoogle Scholar
  70. van der Greef, J., Nyssen, L.M., Maarse, H., ten Noever de Brauw, M.C, Games, D.E. and Alcock, N.J. (1984). The applicability of field desorption mass spectrometry and liquid chromatography/mass spectrometry for the analysis of the pungent principles of capsicum and black pepper. In Progress in Flavour Research, ed. J. Adda. Elsevier, Amsterdam, pp. 603–612.Google Scholar
  71. Van Wassenhove, F., Dirinck, P. and Schamp, N. (1988). Analysis of the key components of celery by two dimensional capillary gas chromatography. In Bioflavour ’87, ed. P. Schreier. de Gruyter, Berlin, pp. 137–144.Google Scholar
  72. Walther, H., Schlunegger, U.P. and Friedli, F. (1983). Quantitative determination of compounds in mixtures by B2E=constant linked scans. Org. Mass Spectrom., 18, 572–574.CrossRefGoogle Scholar
  73. Werkhoff, P., Emberger, R., Guntert, M. and Kopsel, M. (1989). Isolation and characterization of volatile sulfur-containing meat flavor components in model systems. In Thermal Generation of Aromas, ed. T.H. Parliment, R.J. McGorrin and C.-T. Ho. American Chemical Society, Washington, DC, pp. 460–478.CrossRefGoogle Scholar
  74. Werkhoff, P., Bretschneider, W., Guntert, M., Hopp, R. and Surburg, H. (1990a). Chiral analysis in flavor and essential oil chemistry. Part B. Direct enantiomer resolution of (E)-α-ionone and (E)-α-damascone by inclusion gas chromatography. In Flavour Science and Technology, ed. Y. Bessiere and A.F. Thomas. Wiley, Chichester, pp. 33–36.Google Scholar
  75. Werkhoff, P., Bretschneider, W., Herrman, H.J. and Schreiber, K. (1990b). Progress in analysis of odorous substances. Part 10. Techniques for structure analysis of aromas and flavors. Labor Praxis, 14, 151–160.Google Scholar
  76. Werkhoff, P., Bretschneider, W., Herrmann, H.J. and Schreiber, K. (1990c). Progress in analysis of odorous substances. Part 11. Techniques for structure determination of odorous and flavor compounds. LaborPraxis, 14, 256–264.Google Scholar
  77. Whitfield, F.B. and Shaw, K.J. (1984). Analysis of food off-flavours. In Progress in Flavour Research, ed. J. Adda. Elsevier, Amsterdam, pp. 221–238.Google Scholar
  78. Williams, A.A., Tucknott, O.G., Lewis, M.J., May, H.V. and Wachter, L. (1987). Examples of cryogenic matrix isolation GC/IR in the analysis of flavour extracts. In Flavour Science and Technology, ed. M. Martens, G.A. Dalen and H. Russwurm Jr. Wiley, Chichester, pp. 259–270.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • A. J. Macleod

There are no affiliations available

Personalised recommendations